Renata S Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6090307/publications.pdf

Version: 2024-02-01

471061 552369 32 804 17 26 citations h-index g-index papers 32 32 32 1138 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PEGylated versus Non-PEGylated pH-Sensitive Liposomes: New Insights from a Comparative Antitumor Activity Study. Pharmaceutics, 2022, 14, 272.	2.0	16
2	Enhanced antitumor efficacy of lapachol-loaded nanoemulsion in breast cancer tumor model. Biomedicine and Pharmacotherapy, 2021, 133, 110936.	2.5	26
3	Intake of Lactobacillus delbrueckii (pExu:hsp65) Prevents the Inflammation and the Disorganization of the Intestinal Mucosa in a Mouse Model of Mucositis. Microorganisms, 2021, 9, 107.	1.6	18
4	Doxorubicin-loaded pH-sensitive micelles: A promising alternative to enhance antitumor activity and reduce toxicity. Biomedicine and Pharmacotherapy, 2021, 134, 111076.	2.5	22
5	pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. Biomedicine and Pharmacotherapy, 2021, 144, 112317.	2.5	22
6	pH-sensitive doxorubicin-tocopherol succinate prodrug encapsulated in docosahexaenoic acid-based nanostructured lipid carriers: An effective strategy to improve pharmacokinetics and reduce toxic effects. Biomedicine and Pharmacotherapy, 2021, 144, 112373.	2.5	8
7	Physical and biological effects of paclitaxel encapsulation on disteraroylphosphatidylethanolamine-polyethyleneglycol polymeric micelles. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110760.	2.5	5
8	Boron nitride nanotube-CREKA peptide as an effective target system to metastatic breast cancer. Journal of Pharmaceutical Investigation, 2020, 50, 469-480.	2.7	9
9	Encapsulating paclitaxel in polymeric nanomicelles increases antitumor activity and prevents peripheral neuropathy. Biomedicine and Pharmacotherapy, 2020, 132, 110864.	2.5	4
10	Co-delivery of doxorubicin, docosahexaenoic acid, and $\hat{l}\pm$ -tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity. Biomedicine and Pharmacotherapy, 2020, 132, 110876.	2.5	44
11	Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomedicine and Pharmacotherapy, 2019, 118, 109323.	2.5	69
12	Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sciences, 2019, 232, 116678.	2.0	26
13	Paclitaxel-Loaded Folate-Coated pH-Sensitive Liposomes Enhance Cellular Uptake and Antitumor Activity. Molecular Pharmaceutics, 2019, 16, 3477-3488.	2.3	23
14	Carboxylated versus bisphosphonate SWCNT: Functionalization effects on the biocompatibility and in vivo behaviors in tumor-bearing mice. Journal of Drug Delivery Science and Technology, 2019, 50, 266-277.	1.4	10
15	Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Delivery and Translational Research, 2019, 9, 123-130.	3.0	59
16	Protective effect of Lactobacillus delbrueckii subsp. Lactis CIDCA 133 in a model of 5 Fluorouracil-Induced intestinal mucositis. Journal of Functional Foods, 2019, 53, 197-207.	1.6	37
17	Technetium-99m-labeled lapachol as an imaging probe for breast tumor identification. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2019, 38, 167-172.	0.1	3
18	Mesoporous silica SBA-16/hydroxyapatite-based composite for ciprofloxacin delivery to bacterial bone infection. Journal of Sol-Gel Science and Technology, 2018, 85, 369-381.	1.1	19

#	Article	IF	CITATIONS
19	Nanostructured Lipid Carrier Co-loaded with Doxorubicin and Docosahexaenoic Acid as a Theranostic Agent: Evaluation of Biodistribution and Antitumor Activity in Experimental Model. Molecular Imaging and Biology, 2018, 20, 437-447.	1.3	27
20	Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomedicine and Pharmacotherapy, 2018, 97, 489-495.	2.5	54
21	Freeze-dried diethylenetriaminepentaacetic acid-functionalized polymeric micelles containing paclitaxel: A kit formulation for theranostic application in cancer. Journal of Drug Delivery Science and Technology, 2018, 46, 182-187.	1.4	10
22	Permeability and in vivo distribution of poly(\mathcal{E} -caprolactone) nanoparticles loaded with zidovudine. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	2
23	α-Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomedicine and Pharmacotherapy, 2018, 103, 1348-1354.	2.5	40
24	Synthesis, characterization and radiolabeling of polymeric nano-micelles as a platform for tumor delivering. Biomedicine and Pharmacotherapy, 2017, 89, 268-275.	2.5	41
25	Technetium-99 m radiolabeled paclitaxel as an imaging probe for breast cancer in vivo. Biomedicine and Pharmacotherapy, 2017, 89, 146-151.	2.5	23
26	The role of radionuclide probes for monitoring anti-tumor drugs efficacy: A brief review. Biomedicine and Pharmacotherapy, 2017, 95, 469-476.	2.5	9
27	pH-Sensitive, Long-Circulating Liposomes as an Alternative Tool to Deliver Doxorubicin into Tumors: a Feasibility Animal Study. Molecular Imaging and Biology, 2016, 18, 898-904.	1.3	29
28	Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomedicine and Pharmacotherapy, 2016, 84, 252-257.	2.5	42
29	Development of imaging probes for bone cancer in animal models. A systematic review. Biomedicine and Pharmacotherapy, 2016, 83, 1253-1264.	2.5	14
30	Technetium-99m-labeled doxorubicin as an imaging probe for murine breast tumor (4T1 cell line) identification. Nuclear Medicine Communications, 2016, 37, 307-312.	0.5	20
31	99mTc-phytate as a diagnostic probe for assessing inflammatory reaction in malignant tumors. Nuclear Medicine Communications, 2015, 36, 1042-1048.	0.5	10
32	Antiglaucomatous Effects of the Activation of Intrinsic Angiotensin-Converting Enzyme 2., 2013, 54, 4296.		63