
Gaëlle Uzu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089998/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose in atmospheric particulate matter at rural and urban sites across France and Switzerland. Atmospheric Chemistry and Physics, 2022, 22, 6021-6043.	4.9	4
2	Characterization of deposited dust and its respirable fractions in underground coal mines: Implications for oxidative potential-driving species and source apportionment. International Journal of Coal Geology, 2022, 258, 104017.	5.0	11
3	Linking Switzerland's PM ₁₀ and PM _{2.5} oxidative potential (OP) with emission sources. Atmospheric Chemistry and Physics, 2022, 22, 7029-7050.	4.9	20
4	Nine-year trends of PM ₁₀ sources and oxidative potential in a rural background site in France. Atmospheric Chemistry and Physics, 2022, 22, 8701-8723.	4.9	16
5	Overview of the French Operational Network for In Situ Observation of PM Chemical Composition and Sources in Urban Environments (CARA Program). Atmosphere, 2021, 12, 207.	2.3	23
6	Disparities in particulate matter (PM ₁₀) origins and oxidative potential at a city scale (Grenoble, France) – PartÂ1: Source apportionment at three neighbouring sites. Atmospheric Chemistry and Physics, 2021, 21, 5415-5437.	4.9	21
7	Disparities in particulate matter (PM⁢sub>10⁢/sub>) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM ₁₀ oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis.	4.9	33
8	Atmospheric Chemistry and Physics, 2021, 21, 9719-9739. Source apportionment of atmospheric PM ₁₀ oxidative potential: synthesis of 15Âyear-round urban datasets in France. Atmospheric Chemistry and Physics, 2021, 21, 11353-11378.	4.9	30
9	Low mobility of CuO and TiO2 nanoparticles in agricultural soils of contrasting texture and organic matter content. Science of the Total Environment, 2021, 783, 146952.	8.0	11
10	Geochemistry and oxidative potential of the respirable fraction of powdered mined Chinese coals. Science of the Total Environment, 2021, 800, 149486.	8.0	9
11	Beyond cadmium accumulation: Distribution of other trace elements in soils and cacao beans in Ecuador. Environmental Research, 2021, 192, 110241.	7.5	10
12	Mineralogical and geochemical variations from coal to deposited dust and toxicity of size-segregated respirable dust in a blasting mining underground coal mine in Hunan Province, South China. International Journal of Coal Geology, 2021, 248, 103863.	5.0	11
13	Switzerland's PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions. Atmospheric Environment: X, 2021, 12, 100145.	1.4	3
14	Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers. Science of the Total Environment, 2020, 705, 135330.	8.0	30
15	Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 2020, 587, 414-419.	27.8	352
16	High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa. Atmospheric Chemistry and Physics, 2020, 20, 5609-5628.	4.9	16
17	Contrasts in chemical composition and oxidative potential in PM10 near flares in oil extraction and refining areas in Ecuador. Atmospheric Environment, 2020, 223, 117302.	4.1	13
18	Variability of the Atmospheric PM10 Microbiome in Three Climatic Regions of France. Frontiers in Microbiology, 2020, 11, 576750.	3.5	6

Gaëlle Uzu

#	Article	IF	CITATIONS
19	Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS ONE, 2020, 15, e0233425.	2.5	19
20	Arabitol, mannitol, and glucose as tracers of primary biogenic organic aerosol: the influence of environmental factors on ambient air concentrations and spatial distribution over France. Atmospheric Chemistry and Physics, 2019, 19, 11013-11030.	4.9	35
21	Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites. Atmospheric Chemistry and Physics, 2019, 19, 3357-3374.	4.9	53
22	Seasonal Variations and Chemical Predictors of Oxidative Potential (OP) of Particulate Matter (PM), for Seven Urban French Sites. Atmosphere, 2019, 10, 698.	2.3	31
23	Single-particle analysis of industrial emissions brings new insights for health risk assessment of PM. Atmospheric Pollution Research, 2018, 9, 697-704.	3.8	23
24	Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities. Science of the Total Environment, 2018, 622-623, 106-120.	8.0	54
25	Combining Raman microspectrometry and chemometrics for determining quantitative molecular composition and mixing state of atmospheric aerosol particles. Microchemical Journal, 2018, 137, 119-130.	4.5	8
26	An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France. Atmospheric Chemistry and Physics, 2018, 18, 9617-9629.	4.9	66
27	Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM ₁₀ samples from the city of Chamonix (France). Atmospheric Chemistry and Physics, 2018, 18, 7863-7875.	4.9	109
28	Toxicity of TiO ₂ nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships. Nanotoxicology, 2017, 11, 247-255.	3.0	59
29	How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La) Tj ETQq1	1 0.7843	14_rgBT /Ov
30	The unexpected role of bioaerosols in the Oxidative Potential of PM. Scientific Reports, 2017, 7, 10978.	3.3	70
31	The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Scientific Reports, 2017, 7, 11617.	3.3	72
32	Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends. Environmental Pollution, 2017, 231, 262-270.	7.5	41
33	Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 2017, 229, 950-963.	7.5	68
34	Is Tillandsia capillaris an efficient bioindicator of atmospheric metal and metalloid deposition? Insights from five months of monitoring in an urban mining area. Ecological Indicators, 2016, 67, 227-237.	6.3	16
35	Combined Study of Titanium Dioxide Nanoparticle Transport and Toxicity on Microbial Nitrifying Communities under Single and Repeated Exposures in Soil Columns. Environmental Science & Technology, 2016, 50, 10693-10699.	10.0	25
36	Metal concentration and bioaccessibility in different particle sizes of dust and aerosols to refine metal exposure assessment. Journal of Hazardous Materials, 2016, 317, 552-562.	12.4	52

Gaëlle Uzu

#	Article	IF	CITATIONS
37	Phytoavailability of lead altered by two Pelargonium cultivars grown on contrasting lead-spiked soils. Journal of Soils and Sediments, 2016, 16, 581-591.	3.0	38
38	Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites. Journal of Hazardous Materials, 2015, 300, 538-545.	12.4	4
39	Urban Market Gardening in Africa: Foliar Uptake of Metal(loid)s and Their Bioaccessibility in Vegetables; Implications in Terms of Health Risks. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	28
40	Impacts of Anthropogenic Activities on the Contamination of a Sub Watershed of Lake Titicaca. Are Antibiotics a Concern in the Bolivian Altiplano?. Procedia Earth and Planetary Science, 2014, 10, 370-375.	0.6	26
41	Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores. Environmental Research, 2014, 133, 185-194.	7.5	86
42	Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Science of the Total Environment, 2012, 427-428, 253-262.	8.0	267
43	In vitro Assessment of the Pulmonary Toxicity and Gastric Availability of Lead-Rich Particles from a Lead Recycling Plant. Environmental Science & Technology, 2011, 45, 7888-7895.	10.0	86
44	Characterization of abrasion-induced nanoparticle release from paints into liquids and air. Journal of Physics: Conference Series, 2011, 304, 012062.	0.4	27
45	Characterization of lead-recycling facility emissions at various workplaces: Major insights for sanitary risks assessment. Journal of Hazardous Materials, 2011, 186, 1018-1027.	12.4	73
46	Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts: Raman Imaging Study. AlP Conference Proceedings, 2010, , .	0.4	5
47	Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environmental Science & Technology, 2010, 44, 1036-1042.	10.0	342
48	Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environmental Pollution, 2009, 157, 1178-1185.	7.5	151