
Douglas H Adamson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromatographic Approach to Isolate Exfoliated Graphene. Langmuir, 2021, 37, 9378-9384.	3.5	2
2	PolyHIPE foams from pristine graphene: Strong, porous, and electrically conductive materials templated by a 2D surfactant. Journal of Colloid and Interface Science, 2020, 580, 700-708.	9.4	10
3	Surface-Initiated Passing-through Zwitterionic Polymer Brushes for Salt-Selective and Antifouling Materials. Macromolecules, 2020, 53, 10278-10288.	4.8	9
4	Controlled radical polymerization of hydrophilic and zwitterionic brush-like polymers from silk fibroin surfaces. Journal of Materials Chemistry B, 2020, 8, 10392-10406.	5.8	9
5	Interface-exfoliated graphene-based conductive screen-printing inks: low-loading, low-cost, and additive-free. Scientific Reports, 2020, 10, 18047.	3.3	7
6	Effect of Aqueous Anions on Graphene Exfoliation. Langmuir, 2020, 36, 10421-10428.	3.5	3
7	Kinetic study of surfactant-free graphene exfoliation at a solvent interface. Carbon, 2020, 168, 354-361.	10.3	5
8	Self-Assembled Graphene Composites for Flow-Through Filtration. ACS Applied Materials & Interfaces, 2020, 12, 29692-29699.	8.0	0
9	Graphene and Poly(3,4-ethylene dioxythiophene):Poly(4-styrenesulfonate) on Nonwoven Fabric as a Room Temperature Metal and Its Application as Dry Electrodes for Electrocardiography. ACS Applied Materials & Interfaces, 2019, 11, 32339-32345.	8.0	23
10	Characterization of graphene oxide: Variations in reported approaches. Carbon, 2019, 154, 510-521.	10.3	69
11	Pristine Graphene Microspheres by the Spreading and Trapping of Graphene at an Interface. Langmuir, 2019, 35, 14310-14315.	3.5	3
12	Electrical Conductivity of Graphene–Polymer Composite Foams: A Computational Study. Macromolecules, 2019, 52, 7379-7385.	4.8	3
13	Electrospun biomimetic catalytic polymer template for the sol-gel formation of multidimensional ceramic structures. Materials Letters, 2019, 240, 242-245.	2.6	3
14	High-throughput optical thickness and size characterization of 2D materials. Nanoscale, 2018, 10, 14441-14447.	5.6	16
15	From Graphene-like Sheet Stabilized Emulsions to Composite Polymeric Foams: Molecular Dynamics Simulations. Macromolecules, 2018, 51, 7360-7367.	4.8	7
16	Altering and investigating the surfactant properties of graphene oxide. Journal of Colloid and Interface Science, 2017, 493, 365-370.	9.4	25
17	Controlled 3D Assembly of Graphene Sheets to Build Conductive, Chemically Selective and Shapeâ€Responsive Materials. Advanced Materials, 2017, 29, 1604947.	21.0	26
18	Thermal and Electrical Properties of Nanocomposites Based on Selfâ€Assembled Pristine Graphene. Advanced Functional Materials, 2017, 27, 1604277.	14.9	32

#	Article	IF	CITATIONS
19	Formulation of long-wavelength indocyanine green nanocarriers. Journal of Biomedical Optics, 2017, 22, 1.	2.6	13
20	Properties of Pristine Graphene Composites Arising from the Mechanism of Graphene-Stabilized Emulsion Formation. Industrial & amp; Engineering Chemistry Research, 2016, 55, 6777-6782.	3.7	24
21	Azeotrope enabled polymerization of ethylene oxide. RSC Advances, 2016, 6, 94459-94466.	3.6	1
22	"Grafting-Through― Growing Polymer Brushes by Supplying Monomers through the Surface. Macromolecules, 2016, 49, 2477-2483.	4.8	35
23	Fractionation and characterization of graphene oxide by oxidation extent through emulsion stabilization. Carbon, 2016, 98, 491-495.	10.3	68
24	Distribution of Chains in Polymer Brushes Produced by a "Grafting From―Mechanism. Macromolecules, 2016, 49, 547-553.	4.8	36
25	PMMA functionalized boron nitride sheets as nanofillers. Nanoscale, 2015, 7, 10193-10197.	5.6	45
26	Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams. Macromolecules, 2015, 48, 687-693.	4.8	50
27	Boron Nitride Surface Activity as Route to Composite Dielectric Films. ACS Applied Materials & Interfaces, 2015, 7, 16913-16916.	8.0	26
28	Synthesis and Self-Assembly of Toothbrush-like Block Copolymers. Macromolecules, 2015, 48, 4250-4255.	4.8	16
29	Preparation of conductive graphene/graphite infused fabrics using an interface trapping method. Carbon, 2015, 81, 38-42.	10.3	55
30	Robust coaxial capillary microfluidic device for the high throughput formation of polymersomes. Microfluidics and Nanofluidics, 2015, 18, 149-157.	2.2	11
31	Large Scale Thermal Exfoliation and Functionalization of Boron Nitride. Small, 2014, 10, 2352-2355.	10.0	187
32	Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping. ACS Nano, 2013, 7, 7062-7066.	14.6	171
33	Directed formation of silica by a non-peptide block copolymer enzyme mimic. Journal of Materials Chemistry B, 2013, 1, 1977.	5.8	6
34	Titania Condensation by a Bio-Inspired Synthetic Block Copolymer. Chemistry of Materials, 2013, 25, 2056-2063.	6.7	8
35	Methods of graphite exfoliation. Journal of Materials Chemistry, 2012, 22, 24992.	6.7	447
36	Charge-Driven Selective Adsorption of Sodium Dodecyl Sulfate on Graphene Oxide Visualized by Atomic Force Microscopy. Journal of Physical Chemistry C, 2012, 116, 20080-20085.	3.1	25

Douglas H Adamson

#	Article	IF	CITATIONS
37	Strainâ€induced crystallization and mechanical properties of functionalized graphene sheetâ€filled natural rubber. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 718-723.	2.1	94
38	Multifunctional elastomer nanocomposites with functionalized graphene single sheets. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 910-916.	2.1	88
39	Improvement of oil flowability by assembly of combâ€ŧype copolymers with paraffin and asphaltene. AICHE Journal, 2012, 58, 2254-2261.	3.6	39
40	Photocrosslinking the polystyrene core of block-copolymer nanoparticles. Polymer Chemistry, 2011, 2, 665-671.	3.9	12
41	Silicon nanowire polarizers for far ultraviolet (sub-200 nm) applications: Modeling and fabrication. Journal of Applied Physics, 2010, 107, 084305.	2.5	23
42	Non-Peptide Polymeric Silicatein $\hat{l}\pm$ Mimic for Neutral pH Catalysis in the Formation of Silica. Macromolecules, 2007, 40, 5710-5717.	4.8	21
43	Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials, 2007, 19, 4396-4404.	6.7	3,276
44	Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. Journal of Physical Chemistry B, 2006, 110, 8535-8539.	2.6	3,173