Craig Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089923/publications.pdf Version: 2024-02-01

		117453	133063
104	3,968	34	59
papers	citations	h-index	g-index
			0740
111	111	111	3/48
all docs	docs citations	times ranked	citing authors

CDAIC DADKED

#	Article	IF	CITATIONS
1	Major Structural Differences and Novel Potential Virulence Mechanisms from the Genomes of Multiple Campylobacter Species. PLoS Biology, 2005, 3, e15.	2.6	483
2	Prevalence, Distribution, and Diversity of Salmonella enterica in a Major Produce Region of California. Applied and Environmental Microbiology, 2011, 77, 2734-2748.	1.4	216
3	The Complete Genome Sequence and Analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE, 2007, 2, e1358.	1.1	203
4	Differentiation of Campylobacter coli , Campylobacter jejuni , Campylobacter lari , and Campylobacter upsaliensis by a Multiplex PCR Developed from the Nucleotide Sequence of the Lipid A Gene lpxA. Journal of Clinical Microbiology, 2004, 42, 5549-5557.	1.8	170
5	Comparison of Campylobacter jejuni Lipooligosaccharide Biosynthesis Loci from a Variety of Sources. Journal of Clinical Microbiology, 2005, 43, 2771-2781.	1.8	119
6	Transcriptome Analysis of <i>Escherichia coli</i> O157:H7 Exposed to Lysates of Lettuce Leaves. Applied and Environmental Microbiology, 2010, 76, 1375-1387.	1.4	116
7	Comparative Genomic Analysis of Campylobacter jejuni Strains Reveals Diversity Due to Genomic Elements Similar to Those Present in C. jejuni Strain RM1221. Journal of Clinical Microbiology, 2006, 44, 4125-4135.	1.8	115
8	Culture of <i>Campylobacter jejuni</i> with Sodium Deoxycholate Induces Virulence Gene Expression. Journal of Bacteriology, 2008, 190, 2286-2297.	1.0	110
9	The Salmonella Transcriptome in Lettuce and Cilantro Soft Rot Reveals a Niche Overlap with the Animal Host Intestine. Applied and Environmental Microbiology, 2013, 79, 250-262.	1.4	95
10	Comparative genomics of enterohemorrhagic Escherichia coli O145:H28 demonstrates a common evolutionary lineage with Escherichia coli O157:H7. BMC Genomics, 2014, 15, 17.	1.2	84
11	Characterization of Lipooligosaccharide-Biosynthetic Loci of <i>Campylobacter jejuni</i> Reveals New Lipooligosaccharide Classes: Evidence of Mosaic Organizations. Journal of Bacteriology, 2008, 190, 5681-5689.	1.0	82
12	Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. MSphere, 2019, 4, .	1.3	82
13	Escherichia coli Serotype O55:H7 Diversity Supports Parallel Acquisition of Bacteriophage at Shiga Toxin Phage Insertion Sites during Evolution of the O157:H7 Lineage. Journal of Bacteriology, 2012, 194, 1885-1896.	1.0	76
14	Hyperosmotic Stress Response of Campylobacter jejuni. Journal of Bacteriology, 2012, 194, 6116-6130.	1.0	69
15	Comparative Genomics of the Campylobacter lari Group. Genome Biology and Evolution, 2014, 6, 3252-3266.	1.1	69
16	Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of <i>Campylobacter jejuni</i> Determinants Required for Commensalism and Virulence. MBio, 2017, 8, .	1.8	68
17	The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system. Molecular Microbiology, 2006, 62, 278-291.	1.2	59

18 Diversity within the Campylobacter jejuni type I restriction–modification loci. Microbiology (United) Tj ETQq0 0 0.7gBT /Overlock 10 Th

#	Article	IF	CITATIONS
19	Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions. PLoS ONE, 2011, 6, e25553.	1.1	55
20	Detection and Genotyping of Arcobacter and Campylobacter Isolates from Retail Chicken Samples by Use of DNA Oligonucleotide Arrays. Applied and Environmental Microbiology, 2007, 73, 3645-3655.	1.4	54
21	Distinct Acid Resistance and Survival Fitness Displayed by Curli Variants of Enterohemorrhagic Escherichia coli O157:H7. Applied and Environmental Microbiology, 2011, 77, 3685-3695.	1.4	52
22	RcsB Contributes to the Distinct Stress Fitness among Escherichia coli O157:H7 Curli Variants of the 1993 Hamburger-Associated Outbreak Strains. Applied and Environmental Microbiology, 2012, 78, 7706-7719.	1.4	52
23	Contribution of flagella and invasion proteins to pathogenesis of Salmonella enterica serovar enteritidis in chicks. FEMS Microbiology Letters, 2001, 204, 287-291.	0.7	51
24	Characterization of Genetically Matched Isolates of Campylobacter jejuni Reveals that Mutations in Genes Involved in Flagellar Biosynthesis Alter the Organism's Virulence Potential. Applied and Environmental Microbiology, 2007, 73, 3123-3136.	1.4	51
25	Distinct Transcriptional Profiles and Phenotypes Exhibited by Escherichia coli O157:H7 Isolates Related to the 2006 Spinach-Associated Outbreak. Applied and Environmental Microbiology, 2012, 78, 455-463.	1.4	50
26	Agricultural intensification and the evolution of host specialism in the enteric pathogen <i>Campylobacter jejuni</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11018-11028.	3.3	50
27	Updated Campylobacter jejuni Capsule PCR Multiplex Typing System and Its Application to Clinical Isolates from South and Southeast Asia. PLoS ONE, 2015, 10, e0144349.	1.1	50
28	A DNase Encoded by Integrated Element CJIE1 Inhibits Natural Transformation of <i>Campylobacter jejuni</i> . Journal of Bacteriology, 2009, 191, 2296-2306.	1.0	49
29	Lipooligosaccharide of Campylobacter jejuni. Journal of Biological Chemistry, 2011, 286, 12361-12370.	1.6	49
30	Lipopolysaccharide O-chain microheterogeneity of Salmonella serotypes Enteritidis and Typhimurium. Environmental Microbiology, 2001, 3, 332-342.	1.8	46
31	The Complete Genome Sequence and Analysis of the Human Pathogen <i>Campylobacter lari</i> . Foodborne Pathogens and Disease, 2008, 5, 371-386.	0.8	44
32	Nucleases Encoded by the Integrated Elements CJIE2 and CJIE4 Inhibit Natural Transformation of <i>Campylobacter jejuni</i> . Journal of Bacteriology, 2010, 192, 936-941.	1.0	40
33	Campylobacter jejuni capsular genotypes are related to Guillain–Barré syndrome. Clinical Microbiology and Infection, 2015, 21, 852.e1-852.e9.	2.8	40
34	Comparison of Genotypes of <i>Salmonella enterica</i> Serovar Enteritidis Phage Type 30 and 9c Strains Isolated during Three Outbreaks Associated with Raw Almonds. Applied and Environmental Microbiology, 2010, 76, 3723-3731.	1.4	37
35	<i>Salmonella</i> transcriptional signature in <i>Tetrahymena</i> phagosomes and role of acid tolerance in passage through the protist. ISME Journal, 2011, 5, 262-273.	4.4	37
36	Local genes for local bacteria: Evidence of allopatry in the genomes of transatlantic <i>Campylobacter</i> populations. Molecular Ecology, 2017, 26, 4497-4508.	2.0	36

#	Article	IF	CITATIONS
37	Structural Analysis of the Capsular Polysaccharide fromCampylobacter jejuni RM1221. ChemBioChem, 2007, 8, 625-631.	1.3	34
38	<i>Campylobacter</i> Abundance in Breastfed Infants and Identification of a New Species in the Global Enterics Multicenter Study. MSphere, 2020, 5, .	1.3	34
39	Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni. BMC Microbiology, 2007, 7, 50.	1.3	33
40	FdhTU-Modulated Formate Dehydrogenase Expression and Electron Donor Availability Enhance Recovery of <i>Campylobacter jejuni</i> following Host Cell Infection. Journal of Bacteriology, 2012, 194, 3803-3813.	1.0	32
41	Microarray-based comparative genomic indexing of the Cronobacter genus (Enterobacter sakazakii). International Journal of Food Microbiology, 2009, 136, 159-164.	2.1	29
42	Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated <i>Akkermansia</i> Is Strain Dependent. Applied and Environmental Microbiology, 2022, 88, AEM0148721.	1.4	29
43	Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiology, 2014, 44, 108-118.	2.1	27
44	The <i>Campylobacter jejuni</i> helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Molecular Microbiology, 2019, 112, 280-301.	1.2	27
45	Egg contamination bySalmonellaserovarenteritidisfollowing vaccination withΔ-aroA Salmonellaserovartyphimurium. FEMS Microbiology Letters, 2001, 195, 73-78.	0.7	26
46	The <scp><i>C</i></scp> <i>ampylobacter jejuni</i> â€ <scp>RacRS</scp> system regulates fumarate utilization in a low oxygen environment. Environmental Microbiology, 2015, 17, 1049-1064.	1.8	26
47	ldentification of genomic differences between Campylobacter jejuni subsp. jejuni and C. jejuni subsp. doylei at the nap locus leads to the development of a C. jejuni subspeciation multiplex PCR method. BMC Microbiology, 2007, 7, 11.	1.3	25
48	Complete Genome Sequences of Two Escherichia coli O145:H28 Outbreak Strains of Food Origin. Genome Announcements, 2014, 2, .	0.8	25
49	Comparative Genomic Analysis of Clinical Strains of Campylobacter jejuni from South Africa. PLoS ONE, 2008, 3, e2015.	1.1	24
50	Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Communications Biology, 2021, 4, 1015.	2.0	24
51	Growth Phase-Dependent Activation of the DccRS Regulon of <i>Campylobacter jejuni</i> . Journal of Bacteriology, 2010, 192, 2729-2736.	1.0	23
52	Mitigation of avian reproductive tract function by Salmonella enteritidis producing high-molecular-mass lipopolysaccharide. Environmental Microbiology, 2002, 4, 538-545.	1.8	22
53	Complete Genome Sequences of Multidrug-Resistant Campylobacter jejuni Strain 14980A (Turkey Feces) and Campylobacter coli Strain 14983A (Housefly from a Turkey Farm), Harboring a Novel Gentamicin Resistance Mobile Element. Genome Announcements, 2016, 4, .	0.8	22
54	Generation of the membrane potential and its impact on the motility, ATP production and growth inCampylobacter jejuni. Molecular Microbiology, 2017, 105, 637-651.	1.2	22

#	Article	IF	CITATIONS
55	Multi-drug resistant Escherichia coli in diarrhoeagenic foals: Pulsotyping, phylotyping, serotyping, antibiotic resistance and virulence profiling. Veterinary Microbiology, 2018, 223, 144-152.	0.8	22
56	Molecular diversity of the genetic loci responsible for lipopolysaccharide core oligosaccharide assembly within the genus Salmonella. Molecular Microbiology, 2002, 46, 1305-1318.	1.2	20
57	The Majority of Genotypes of the Virulence Gene inlA Are Intact among Natural Watershed Isolates of Listeria monocytogenes from the Central California Coast. PLoS ONE, 2016, 11, e0167566.	1.1	20
58	Comparative Genomic Analysis Identifies a Campylobacter Clade Deficient in Selenium Metabolism. Genome Biology and Evolution, 2017, 9, 1843-1858.	1.1	20
59	Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2020, 14, e0008533.	1.3	20
60	Campylobacter jejuni Lipooligosaccharides: Structures and Biosynthesis. , 2014, , 483-504.		19
61	Campylobacter jejuni Demonstrates Conserved Proteomic and Transcriptomic Responses When Co-cultured With Human INT 407 and Caco-2 Epithelial Cells. Frontiers in Microbiology, 2019, 10, 755.	1.5	19
62	The <scp><i>C</i></scp> <i>ampylobacter jejuni</i> â€ <scp>CprRS</scp> two omponent regulatory system regulates aspects of the cell envelope. Molecular Microbiology, 2015, 96, 189-209.	1.2	16
63	Analysis of the Activity and Regulon of the Two-Component Regulatory System Composed by Cjj81176_1484 and Cjj81176_1483 of Campylobacter jejuni. Journal of Bacteriology, 2015, 197, 1592-1605.	1.0	15
64	The Unique Phospholipidome of the Enteric Pathogen Campylobacter jejuni: Lysophosholipids Are Required for Motility at Low Oxygen Availability. Journal of Molecular Biology, 2020, 432, 5244-5258.	2.0	15
65	Morphology heterogeneity within a <i>Campylobacter jejuni</i> helical population: the use of calcofluor white to generate rodâ€shaped <i>C. jejuni</i> 81â€176 clones and the genetic determinants responsible for differences in morphology within 11168 strains. Molecular Microbiology, 2017, 104, 948-971	1.2	14
66	High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni. MBio, 2015, 6, e00612-15.	1.8	13
67	Catabolite repression in <i>Campylobacter jejuni</i> correlates with intracellular succinate levels. Environmental Microbiology, 2018, 20, 1374-1388.	1.8	13
68	Genome Sequences of Eight Shiga Toxin-Producing Escherichia coli Strains Isolated from a Produce-Growing Region in California. Microbiology Resource Announcements, 2018, 7, .	0.3	11
69	Unique inducible filamentous motility identified in pathogenic <i>Bacillus cereus</i> group species. ISME Journal, 2020, 14, 2997-3010.	4.4	8
70	Genomic population structure associated with repeated escape of Salmonella enterica ATCC14028s from the laboratory into nature. PLoS Genetics, 2021, 17, e1009820.	1.5	8
71	Complete Genome Sequences of Campylobacter jejuni Strains RM3196 (233.94) and RM3197 (308.95) Isolated from Patients with Guillain-Barré Syndrome. Genome Announcements, 2015, 3, .	0.8	7
72	Complete Genome Sequence of Acinetobacter radioresistens Strain LH6, a Multidrug-Resistant Bacteriophage-Propagating Strain. Microbiology Resource Announcements, 2018, 7, .	0.3	7

#	Article	IF	CITATIONS
73	A porcine ligated loop model reveals new insight into the host immune response against <i>Campylobacter jejuni</i> . Gut Microbes, 2020, 12, 1814121.	4.3	7
74	Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products. Pathogens, 2021, 10, 529.	1.2	7
75	DNA adenine methylase, not the Pstl restriction-modification system, regulates virulence gene expression in Shiga toxin-producing Escherichia coli. Food Microbiology, 2021, 96, 103722.	2.1	7
76	The transcriptome of Escherichia coli O157: H7 reveals a role for oxidative stress resistance in its survival from predation by Tetrahymena. FEMS Microbiology Ecology, 2020, 96, .	1.3	6
77	GenotypingCampylobacter jejuniby Comparative Genome Indexing: An Evaluation with Pulsed-Field Gel Electrophoresis andflaASVR Sequencing. Foodborne Pathogens and Disease, 2009, 6, 337-349.	0.8	5
78	Regulation of Energy Metabolism by the Extracytoplasmic Function (ECF) σ Factors of Arcobacter butzleri. PLoS ONE, 2012, 7, e44796.	1.1	5
79	Complete Genome Sequence of Campylobacter iguaniorum Strain RM11343, Isolated from an Alpaca. Genome Announcements, 2016, 4, .	0.8	5
80	Design and Operation of a Scaled-up Pilot Plant for the Removal of Sugar Beet Extract Colorants using Powdered Activated Carbon. Sugar Tech, 2021, 23, 167-177.	0.9	5
81	Genomic Characterization of Campylobacter jejuni Adapted to the Guinea Pig (Cavia porcellus) Host. Frontiers in Cellular and Infection Microbiology, 2021, 11, 607747.	1.8	5
82	Complete Annotated Genome Sequences of Three Campylobacter jejuni Strains Isolated from Naturally Colonized Farm-Raised Chickens. Genome Announcements, 2017, 5, .	0.8	4
83	Biomolecule sulphation and novel methylations related to Guillain-Barré syndrome-associated Campylobacter jejuni serotype HS:19. Microbial Genomics, 2021, 7, .	1.0	4
84	Complete Genomic Sequence of Campylobacter jejuni subsp. jejuni HS:19 Strain RM1285 Isolated from Packaged Chicken. Genome Announcements, 2016, 4, .	0.8	3
85	Genomic Sequence of Campylobacter jejuni subsp. jejuni HS:19 Penner Serotype Reference Strain RM3420. Genome Announcements, 2017, 5, .	0.8	3
86	Draft Genome Sequences of Nine Campylobacter hyointestinalis subsp. lawsonii Strains. Microbiology Resource Announcements, 2018, 7, .	0.3	3
87	Complete Genome Sequences of Three Bacillus amyloliquefaciens Strains That Inhibit the Growth of Listeria monocytogenes <i>In Vitro</i> . Genome Announcements, 2018, 6, .	0.8	3
88	Complete Genome Sequence of Pantoea agglomerans ASB05 Using Illumina and PacBio Sequencing. Microbiology Resource Announcements, 2021, 10, e0050121.	0.3	3
89	Campylobacter and Arcobacter. , 0, , 49-65.		3
90	HIV retesting in pregnant women in South Africa: Outcomes of a quality improvement project targeting health systems' weaknesses. Southern African Journal of HIV Medicine, 2018, 19, 784.	0.3	3

#	ARTICLE	IF	CITATIONS
91	Complete Genome Sequence of Salmonella enterica subsp. <i>enterica</i> Serovar Thompson Strain RM6836. Genome Announcements, 2013, 1, .	0.8	2
92	Complete Genome Sequence and Annotation of a Campylobacter jejuni Strain, MTVDSCj20, Isolated from a Naturally Colonized Farm-Raised Chicken. Genome Announcements, 2014, 2, .	0.8	2
93	Complete Genome Sequence of Lactococcus lactis subsp . lactis Strain 14B4, Which Inhibits the Growth of Salmonella enterica Serotype Poona In Vitro. Microbiology Resource Announcements, 2018, 7, .	0.3	2
94	Complete Genome Sequence of Enterobacter asburiae Strain AEB30, Determined Using Illumina and PacBio Sequencing. Microbiology Resource Announcements, 2021, 10, e0056221.	0.3	2
95	RNA and Sugars, Unique Properties of Bacteriophages Infecting Multidrug Resistant Acinetobacter radioresistens Strain LH6. Viruses, 2021, 13, 1652.	1.5	2
96	Differences in the Propensity of Different Antimicrobial Resistance Determinants to Be Disseminated via Transformation in Campylobacter jejuni and Campylobacter coli. Microorganisms, 2022, 10, 1194.	1.6	2
97	Complete Genome Sequences of Two Outbreak Strains of Salmonella enterica subsp. <i>enterica</i> Serovar Thompson Associated with Cilantro. Genome Announcements, 2015, 3, .	0.8	1
98	Complete Genomic Sequences of Two Salmonella enterica subsp. enterica Serogroup C2 (O:6,8) Strains from Central California. Genome Announcements, 2017, 5, .	0.8	1
99	Complete Genome Sequence of the Arcobacter marinus Type Strain JCM 15502. Microbiology Resource Announcements, 2018, 7, .	0.3	1
100	Dataset of the phospholipidome and transcriptome of Campylobacter jejuni under different growth conditions. Data in Brief, 2020, 33, 106349.	0.5	1
101	Contribution of flagella and invasion proteins to pathogenesis of Salmonella enterica serovar enteritidis in chicks. , 0, .		1
102	Complete Genome Sequences of Three Shiga Toxin-Producing Escherichia coli O111:H8 Strains Exhibiting an Aggregation Phenotype. Microbiology Resource Announcements, 2019, 8, .	0.3	0
103	Complete Genomic Sequences of Three Salmonella enterica subsp. <i>enterica</i> Serovar Muenchen Strains from an Orchard in San Joaquin County, California. Microbiology Resource Announcements, 2020, 9, .	0.3	0
104	Complete Genome Sequences of Two Bacillus velezensis Strains Isolated from California Raisin Vineyard Soils. Microbiology Resource Announcements, 0, , .	0.3	0