
Martina Prochazkova-Carlotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089866/publications.pdf

Version: 2024-02-01

Martina

#	Article	IF	CITATIONS
1	Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Modern Pathology, 2011, 24, 613-623.	2.9	137
2	IRF4 Gene Rearrangements Define a Subgroup of CD30-Positive Cutaneous T-Cell Lymphoma: A Study of 54 Cases. Journal of Investigative Dermatology, 2010, 130, 816-825.	0.3	114
3	Human Bone Marrow-Derived Stem Cells Acquire Epithelial Characteristics through Fusion with Gastrointestinal Epithelial Cells. PLoS ONE, 2011, 6, e19569.	1.1	94
4	Multiple genetic alterations in primary cutaneous large B-cell lymphoma, leg type support a common lymphomagenesis with activated B-cell-like diffuse large B-cell lymphoma. Modern Pathology, 2014, 27, 402-411.	2.9	78
5	Assessment of diagnostic criteria between primary cutaneous anaplastic large-cell lymphoma and CD30-rich transformed mycosis fungoides; a study of 66 cases. British Journal of Dermatology, 2015, 172, 1547-1554.	1.4	58
6	Reduced Placental Telomere Length during Pregnancies Complicated by Intrauterine Growth Restriction. PLoS ONE, 2013, 8, e54013.	1.1	41
7	Molecular alterations and tumor suppressive function of the <i>DUSP22 (Dual Specificity) Tj ETQq1 1 0.784314</i>	∔ rgβT /Ον 0.8	erlock 10 Tf 5 41
8	Diagnostic and Prognostic Value of <i>BCL2</i> Rearrangement in 53 Patients With Follicular Lymphoma Presenting as Primary Skin Lesions. American Journal of Clinical Pathology, 2015, 143, 362-373.	0.4	38
9	PD-L1 and PD-L2 Are Differentially Expressed by Macrophages or Tumor Cells in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type. American Journal of Surgical Pathology, 2018, 42, 326-334.	2.1	38
10	The Cytolethal Distending Toxin Subunit CdtB of Helicobacter hepaticus Promotes Senescence and Endoreplication in Xenograft Mouse Models of Hepatic and Intestinal Cell Lines. Frontiers in Cellular and Infection Microbiology, 2017, 7, 268.	1.8	37
11	Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas. Modern Pathology, 2018, 31, 1332-1342.	2.9	31
12	Telomerase functions beyond telomere maintenance in primary cutaneous T-cell lymphoma. Blood, 2014, 123, 1850-1859.	0.6	24
13	Proliferative Nodules vs Melanoma Arising in Giant Congenital Melanocytic Nevi During Childhood. JAMA Dermatology, 2016, 152, 1147.	2.0	21
14	A novel 3D culture model recapitulates primary FL B-cell features and promotes their survival. Blood Advances, 2021, 5, 5372-5386.	2.5	18
15	PLCG1 Gene Mutations Are Uncommon in Cutaneous T-Cell Lymphomas. Journal of Investigative Dermatology, 2015, 135, 2334-2337.	0.3	16
16	Xenograft and cell culture models of Sézary syndrome reveal cell of origin diversity and subclonal heterogeneity. Leukemia, 2021, 35, 1696-1709.	3.3	16
17	Reliable blood cancer cells' telomere length evaluation by qPCR. Cancer Medicine, 2020, 9, 3153-3162.	1.3	13
18	TP53 alterations in primary and secondary Sézary syndrome: A diagnostic tool for the assessment of malignancy in patients with erythroderma. PLoS ONE, 2017, 12, e0173171.	1.1	13

Martina

IF # ARTICLE CITATIONS Exploring <i>hTERT</i> promoter methylation in cutaneous Tâ€cell lymphomas. Molecular Oncology, 2.1 2022, 16, 1931-1946. Intrahepatic Xenograft of Cutaneous T-Cell Lymphoma Cell Lines. American Journal of Pathology, 2016, 20 1.9 11 186, 1775-1785. Molecular analysis of immunoglobulin variable genes supports a germinal center experienced normal counterpart in primary cutaneous diffuse large B-cell lymphoma, leg-type. Journal of Dermatological 1.0 Science, 2017, 88, 238-246. IRF4 Expression without IRF4 Rearrangement Is a General Feature of Primary Cutaneous Diffuse Large 22 0.3 10 B-Cell Lymphoma, Leg Type. Journal of Investigative Dermatology, 2010, 130, 1470-1472. Cytolethal distending toxin induces the formation of transient messenger-rich ribonucleoprotein 2.1 núclear invaginations in surviving cells. PLoS Pathogens, 2019, 15, e1007921. Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in 24 1.0 6 Cutaneous T-Cell Lymphomas. Genes, 2022, 13, 539. Cutaneous Lymphocyte Antigen Is a PotentialÂTherapeutic Target in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2022, 142, 3243-3252.e10. Evaluation of Quantitative Fluorescence in situ Hybridization for Relative Measurement of Telomere 26 0.7 3 Length in Placental Mesenchymal Core Cells. Gynecologic and Obstetric Investigation, 2016, 81, 54-60. Challenges in Assessing MYC Rearrangement in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg-Type. American Journal of Surgical Pathology, 2020, 44, 424-427. 2.1 Targeting Epigenetic Modifiers Can Reduce the Clonogenic Capacities of Sézary Cells. Frontiers in 28 1.3 3 Oncology, 2021, 11, 775253.