Yasunori Matsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089496/publications.pdf

Version: 2024-02-01

687363 610901 44 633 13 24 citations h-index g-index papers 57 57 57 1040 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Visible-light, photoredox catalyzed, oxidative hydroxylation of arylboronic acids using a metal–organic framework containing tetrakis(carboxyphenyl)porphyrin groups. Chemical Communications, 2015, 51, 16103-16106.	4.1	93
2	Curie Temperature ofBaTiO3. Japanese Journal of Applied Physics, 1995, 34, 5443-5445.	1.5	79
3	New Fluorescence Domain "Excited Multimer―Formed upon Photoexcitation of Continuously Stacked Diaroylmethanatoboron Difluoride Molecules with Fused Ï€â€Orbitals in Crystals. Chemistry - A European Journal, 2015, 21, 18128-18137.	3.3	62
4	Singlet-Fission-Born Quintet State: Sublevel Selections and Trapping by Multiexciton Thermodynamics. Journal of Physical Chemistry Letters, 2018, 9, 5855-5861.	4.6	55
5	Exergonic Intramolecular Singlet Fission of an Adamantane-Linked Tetracene Dyad via Twin Quintet Multiexcitons. Journal of Physical Chemistry C, 2019, 123, 18813-18823.	3.1	39
6	A Probable Hydrogen-Bonded Meisenheimer Complex: An Unusually High SNAr Reactivity of Nitroaniline Derivatives with Hydroxide Ion in Aqueous Media. Journal of Organic Chemistry, 2011, 76, 6356-6361.	3.2	27
7	Roomâ€Temperature Phosphorescence of Crystalline Metalâ€Free Organoboron Complex. ChemPhysChem, 2016, 17, 4033-4036.	2.1	25
8	Photochemical Intramolecular Câ^'H Addition of Dimesityl(hetero)arylboranes through a [1,6]â€6igmatropic Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 12210-12214.	13.8	21
9	A facile and high-yield formation of dipyrrin-boronic acid dyads and triads: a light-harvesting system in the visible region based on the efficient energy transfer. Organic and Biomolecular Chemistry, 2015, 13, 2574-2581.	2.8	18
10	X-ray-Triggered Thermoluminescence and Density Functional Theory Characterization of a gem-Diphenyltrimethylenemethane Biradical. Australian Journal of Chemistry, 2010, 63, 1342.	0.9	16
11	Remarkable Solvatofluorochromism of a [2.2]Paracyclophaneâ€Containing Organoboron Complex: A Large Stokes Shift Promoted by Excited State Intramolecular Charge Transfer. ChemPhotoChem, 2017, 1, 188-197.	3.0	15
12	Intramolecular Triple Cyclization Strategy for Sila―and Oxaâ€Analogues of Truxene with Longâ€Lived Phosphorescence. Asian Journal of Organic Chemistry, 2017, 6, 290-296.	2.7	14
13	Chargeâ€Transfer and Arrangement Effects on Delayed Photoluminescence from Phthalimide Cocrystals. ChemPhotoChem, 2018, 2, 42-52.	3.0	14
14	Twisted molecular geometry and localized electronic structure of the triplet excited gem-diphenyltrimethylenemethane biradical: substituent effects on thermoluminescence and related theoretical calculations. Tetrahedron, 2011, 67, 7431-7439.	1.9	12
15	Synthesis and basic properties of tetrathieno [2,3-a:3′,2′-c:2″,3″-f:3‴,2‴-h]naphthalene: a new π-corsystem obtained by photoinduced electrocyclization–dehydrogenation reactions of tetra(3-thienyl)ethene. Tetrahedron Letters, 2013, 54, 4049-4053.	njugated 1.4	12
16	Synthesis and Photophysical Studies of Dibenzophosphole Oxides with D–A–D Triad Structures. European Journal of Organic Chemistry, 2019, 2019, 3735-3743.	2.4	12
17	The lifetime and efficiency of triplet–triplet fluorescence from the excited state of a TMM biradical determined using transient emission spectroscopy by two-color two-laser flash photolysis. Physical Chemistry Chemical Physics, 2013, 15, 7064.	2.8	11
18	Amorphous Solid Simulation and Trial Fabrication of the Organic Field-Effect Transistor of Tetrathienonaphthalenes Prepared by Using Microflow Photochemical Reactions: A Theoretical Calculation-Inspired Investigation. Journal of Organic Chemistry, 2016, 81, 3168-3176.	3.2	10

#	Article	IF	Citations
19	Adiabatic process of higher electronically excited states: luminescence from an excited state biradical generated by irradiation of benzophenoneâ€substituted cyclopropanes. Journal of Physical Organic Chemistry, 2017, 30, e3636.	1.9	10
20	Elongation of Triplet Lifetime Caused by Intramolecular Energy Hopping in Diphenylanthracene Dyads Oriented to Undergo Efficient Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry B, 2021, 125, 4831-4837.	2.6	10
21	The "excited state C–C bond cleavage–luminescence―phenomenon of a biphenyl-substituted methylenecyclopropane triggered by intermolecular energy transfer from triplet benzophenone. Chemical Communications, 2014, 50, 13963-13966.	4.1	9
22	Triplet–Triplet Annihilation-Photon Upconversion Employing an Adamantane-linked Diphenylanthracene Dyad Strategy. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112107.	3.9	9
23	Photochemical Intramolecular Câ°'H Addition of Dimesityl(hetero)arylboranes through a [1,6]â€ 5 igmatropic Rearrangement. Angewandte Chemie, 2017, 129, 12378-12382.	2.0	7
24	Synthesis of novel π-extended D–A–D-type dipyrido[3,2- <i>a</i> :2′,3′- <i>c</i>]phenazine derivatives a their photosensitized singlet oxygen generation. New Journal of Chemistry, 2021, 45, 2264-2275.	nd 2.8	7
25	Formation of a trithia[5]helicene in an unexpected photoreaction of a methyl-substituted bis(dithienylethenyl)thiophene through a double sequence of 6Ï€-electrocyclization/aromatization (dehydrogenation/demethylation). Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 48-55.	3.9	6
26	A leaning amine–ketone dyad with a nonconjugated linker: solvatofluorochromism and dual fluorescence associated with intramolecular charge transfer. Photochemical and Photobiological Sciences, 2018, 17, 1157-1168.	2.9	6
27	Unexpected formation of a phenonium ion-containing salt by single electron-transfer oxidation of a cage compound possessing triphenylamine moieties. Tetrahedron Letters, 2014, 55, 4366-4369.	1.4	4
28	Cooperative effects of o - and m -methyl groups on the intramolecular charge-transfer emission properties of dibenzoylmethanatoboron difluorides. Photochemical and Photobiological Sciences, 2017, 16, 845-853.	2.9	4
29	Electronâ€Transfer Reactions Triggered by Uncharged or Cationic Photosensitizer: Methodology for Generation of o â€Quinodimethane and Analysis of Back Electronâ€Transfer Process. Asian Journal of Organic Chemistry, 2017, 6, 458-468.	2.7	4
30	Basic Properties of Organic Radicals and Their Functionalization — From Examples in the Past to Organic Radical Light-Emitting Diode in the Future—. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 434-441.	0.1	4
31	Design, Generation, and Characterization of a 1,5-Hexadiene Bearing Two Lophyl Radicals as a Probe of the Stepwise Mechanism for the Cope Rearrangement. Bulletin of the Chemical Society of Japan, 2011, 84, 537-543.	3.2	3
32	Ab initio and first principles theoretical investigations of triplet–triplet fluorescence in trimethylenemethane biradicals. RSC Advances, 2016, 6, 83668-83672.	3.6	3
33	Aggregation-induced emission active thermally-activated delayed fluorescence materials possessing N-heterocycle and sulfonyl groups. Journal of Materials Chemistry C, 2022, 10, 4607-4613.	5.5	3
34	Rates of Ring Opening of Radical Cation Intermediates Govern Differences in Thermoluminescence between 1―and 2â€Naphthylâ€Substituted Methylenecyclopropanes. ChemPhotoChem, 2020, 4, 168-172.	3.0	2
35	Fluorescence Behavior Associated with a Possible Intercolumnar Charge-transfer Interaction in the Crystalline State of a Dyad Consisting of Mesitylene and 1,4-Dicyano-2-methylnaphthalene Subunits. Rapid Communication in Photoscience, 2015, 4, 31-33.	0.1	2
36	Remarkable Piezofluorochromism of an Organoboron Complex Containing [2.2]Paracyclophane. Tetrahedron Letters, 2022, 101, 153913.	1.4	2

#	Article	IF	CITATIONS
37	Spectroscopic and electrical characterization of $\hat{l}\pm,\hat{l}^3$ -bisdiphenylene- \hat{l}^2 -phenylallyl radical as an organic semiconductor. Research on Chemical Intermediates, 2018, 44, 4765-4774.	2.7	1
38	Time-Resolved EPR Study on Singlet-Fission Induced Quintet Generation and Subsequent Triplet Dissociation in TIPS-Phenyl-Tetracene Aggregates. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 163-167.	0.3	1
39	Theoretical investigation on structure and electronic properties of Si-bridged π-conjugated systems. AIP Conference Proceedings, 2015, , .	0.4	O
40	Remarkable Solvatofluorochromism of a [2.2]Paracyclophane-Containing Organoboron Complex: A Large Stokes Shift Promoted by Excited State Intramolecular Charge Transfer. ChemPhotoChem, 2017, 1, 135-135.	3.0	0
41	Rates of Ring Opening of Radical Cation Intermediates Govern Differences in Thermoluminescence between 1â€â€and 2â€Naphthylâ€Substituted Methylenecyclopropanes. ChemPhotoChem, 2020, 4, 156-156.	3.0	O
42	Unique Orbital Interactions in the Ground and Electronically Excited States of Biradicals Brought about by the Existence of "Twisted π-Space― , 2015, , 315-322.		0
43	Effects of the Alkyl Substituents on the Organic Thin Film Transistor Characteristics of Thiophene-fused Naphthalenes:. Journal of the Japan Society of Colour Material, 2017, 90, 233-237.	0.1	O
44	(Invited) Geometry and Dynamics of Quintet Multiexciton Studied By Time-Resolved EPR. ECS Meeting Abstracts, 2019, , .	0.0	0