Mario Ruben

List of Publications by Citations

Source: https://exaly.com/author-pdf/6089339/mario-ruben-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 116 285 15,742 h-index g-index citations papers 8.8 6.75 17,319 303 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
285	Grid-type metal ion architectures: functional metallosupramolecular arrays. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 3644-62	16.4	1163
284	Electronic read-out of a single nuclear spin using a molecular spin transistor. <i>Nature</i> , 2012 , 488, 357-60	50.4	618
283	Supramolecular spin valves. <i>Nature Materials</i> , 2011 , 10, 502-6	27	561
282	Electrically driven nuclear spin resonance in single-molecule magnets. <i>Science</i> , 2014 , 344, 1135-8	33.3	542
281	Emerging trends in spin crossover (SCO) based functional materials and devices. <i>Coordination Chemistry Reviews</i> , 2017 , 346, 176-205	23.2	445
280	Graphene spintronic devices with molecular nanomagnets. <i>Nano Letters</i> , 2011 , 11, 2634-9	11.5	325
279	Homo-coupling of terminal alkynes on a noble metal surface. <i>Nature Communications</i> , 2012 , 3, 1286	17.4	309
278	Spin Crossover in a Supramolecular Fe4II [20] Grid Triggered by Temperature, Pressure, and Light. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 2504-2507	16.4	294
277	Metal-organic honeycomb nanomeshes with tunable cavity size. <i>Nano Letters</i> , 2007 , 7, 3813-7	11.5	281
276	Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. <i>Nature Nanotechnology</i> , 2013 , 8, 165-9	28.7	249
275	Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 710-3	16.4	208
274	2D supramolecular assemblies of benzene-1,3,5-triyl-tribenzoic acid: temperature-induced phase transformations and hierarchical organization with macrocyclic molecules. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15644-51	16.4	207
273	Controlled metalation of self-assembled porphyrin nanoarrays in two dimensions. <i>ChemPhysChem</i> , 2007 , 8, 250-4	3.2	187
272	Addressing metal centres in supramolecular assemblies. <i>Chemical Society Reviews</i> , 2006 , 35, 1056-67	58.5	181
271	Self-recognition and self-selection in multicomponent supramolecular coordination networks on surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 179	927:30	175
270	Metallionen-Gitterarchitekturen: funktionelle supramolekulare Metallkomplexe. <i>Angewandte Chemie</i> , 2004 , 116, 3728-3747	3.6	172
269	Chiral kagom[lattice from simple ditopic molecular bricks. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11778-82	16.4	168

(2012-2008)

268	Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets. <i>Nano Letters</i> , 2008 , 8, 3364-8	11.5	165	
267	Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. Journal of the American Chemical Society, 2009 , 131, 15143-51	16.4	163	
266	On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. <i>Accounts of Chemical Research</i> , 2015 , 48, 2140-50	24.3	161	
265	Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm. <i>Physical Review Letters</i> , 2017 , 119, 187702	7.4	159	
264	Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment. <i>Physical Review B</i> , 2011 , 83,	3.3	152	
263	Molecular spin qudits for quantum algorithms. <i>Chemical Society Reviews</i> , 2018 , 47, 501-513	58.5	151	
262	Spin dynamics in the negatively charged terbium (III) bis-phthalocyaninato complex. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4387-96	16.4	150	
261	Toward Highly Reversible MagnesiumBulfur Batteries with Efficient and Practical Mg[B(hfip)4]2Electrolyte. <i>ACS Energy Letters</i> , 2018 , 3, 2005-2013	20.1	149	
260	Synthesis of extended graphdiyne wires by vicinal surface templating. <i>Nano Letters</i> , 2014 , 14, 1891-7	11.5	149	
259	Micro- and nanopatterning of spin-transition compounds into logical structures. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8596-600	16.4	148	
258	Supramolecular spintronic devices: spin transitions and magnetostructural correlations in [Fe4IIL4]8+ [2x2]-grid-type complexes. <i>Chemistry - A European Journal</i> , 2003 , 9, 4422-9	4.8	143	
257	Coupling single molecule magnets to ferromagnetic substrates. <i>Physical Review Letters</i> , 2011 , 107, 177	′2 9.5 4	139	
256	Room-temperature spin-transition iron compounds. <i>Monatshefte Fil Chemie</i> , 2009 , 140, 695-733	1.4	137	
255	Carbon dioxide and metal centres: from reactions inspired by nature to reactions in compressed carbon dioxide as solvent. <i>Coordination Chemistry Reviews</i> , 1999 , 182, 67-100	23.2	136	
254	Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11900-1	16.4	131	
253	High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3881-3	16.4	129	
252	Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. <i>Nature Communications</i> , 2012 , 3, 953	17.4	122	
251	Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. <i>Physical Review Letters</i> , 2012 , 108, 086101	7.4	118	

250	Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator. <i>Advanced Materials</i> , 2016 , 28, 5195-9	24	108
249	Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface. <i>Nano Letters</i> , 2005 , 5, 901-4	11.5	106
248	Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 6678-81	11.5	104
247	Durch Temperatur, Druck oder Licht induzierter SpinBergang in einer supramolekularen Fe-[2🛮]-Gitterverbindung. <i>Angewandte Chemie</i> , 2000 , 112, 2563-2566	3.6	103
246	Single-molecule magnetism in a pentacoordinate cobalt(II) complex supported by an antenna ligand. <i>Inorganic Chemistry</i> , 2014 , 53, 8200-2	5.1	102
245	Random two-dimensional string networks based on divergent coordination assembly. <i>Nature Chemistry</i> , 2010 , 2, 131-7	17.6	101
244	Synthesis of ionisable $[2 \times 2]$ grid-type metallo-arrays and reversible protonic modulation of the optical properties of the $[Co4(II)L4]8+$ species. <i>Chemical Communications</i> , 2003 , 1338-9	5.8	101
243	One-Dimensional Self-Assembled Molecular Chains on Cu(100): Interplay between Surface-Assisted Coordination Chemistry and Substrate Commensurability. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10982-10987	3.8	97
242	Surface-confined supramolecular coordination chemistry. <i>Topics in Current Chemistry</i> , 2009 , 287, 1-44		95
241	Hierarchical self-assembly of supramolecular spintronic modules into 1D- and 2D-architectures with emergence of magnetic properties. <i>Chemistry - A European Journal</i> , 2004 , 11, 94-100	4.8	94
240	Switching of a coupled spin pair in a single-molecule junction. <i>Nature Nanotechnology</i> , 2013 , 8, 575-9	28.7	89
239	Thin deposits and patterning of room-temperature-switchable one-dimensional spin-crossover compounds. <i>Langmuir</i> , 2011 , 27, 4076-81	4	89
238	Molecular quantum spintronics: supramolecular spin valves based on single-molecule magnets and carbon nanotubes. <i>International Journal of Molecular Sciences</i> , 2011 , 12, 6656-67	6.3	84
237	Above room temperature spin transition in a metallo-supramolecular coordination oligomer/polymer. <i>Chemical Communications</i> , 2007 , 2636-8	5.8	80
236	Surface-enhanced Raman signal for terbium single-molecule magnets grafted on graphene. <i>ACS Nano</i> , 2010 , 4, 7531-7	16.7	79
235	Functional supramolecular devices: [M4IIL4]8+ [2 x 2]-grid-type complexes as multilevel molecular electronic species. <i>Chemistry - A European Journal</i> , 2003 , 9, 291-9	4.8	79
234	Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve. <i>ACS Nano</i> , 2015 , 9, 4458-64	16.7	78
233	Rotational and constitutional dynamics of caged supramolecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 21332-6	11.5	76

232	Multi-modal sensing in spin crossover compounds. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7836-7844	7.1	75
231	Multilevel Molecular Electronic Species: Electrochemical Reduction of a [21] Co Grid-Type Complex by 11 Electrons in 10 Reversible Steps. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4139-4142	16.4	75
230	Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6072-5	16.4	71
229	Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagom[hetwork. <i>Nano Letters</i> , 2009 , 9, 3509-14	11.5	69
228	Spin transition in a chainlike supramolecular iron(II) complex. <i>Inorganic Chemistry</i> , 2006 , 45, 10019-21	5.1	68
227	Spin transition in arrays of gold nanoparticles and spin crossover molecules. ACS Nano, 2015, 9, 4496-50	7 16.7	67
226	Expanding the coordination cage: a ruthenium(II)-polypyridine complex exhibiting high quantum yields under ambient conditions. <i>Inorganic Chemistry</i> , 2009 , 48, 5677-84	5.1	67
225	Single-molecule transport in three-terminal devices. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 374	128	66
224	Surface-Assisted Assembly of 2D Metal Organic Networks That Exhibit Unusual Threefold Coordination Symmetry. <i>Angewandte Chemie</i> , 2007 , 119, 724-727	3.6	66
223	Addressing the metal centers of [2x2] CoII4 grid-type complexes by STM/STS. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7896-900	16.4	66
222	Visions for a molecular future. <i>Nature Nanotechnology</i> , 2013 , 8, 385-9	28.7	65
221	Ordering and stabilization of metal-organic coordination chains by hierarchical assembly through hydrogen bonding at a surface. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8835-8	16.4	65
220	A bibenzimidazole-containing ruthenium(II) complex acting as a cation-driven molecular switch. <i>Inorganic Chemistry</i> , 2000 , 39, 1621-4	5.1	65
219	Sublimable Spin-Crossover Complexes: From Spin-State Switching to Molecular Devices. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7502-7521	16.4	65
218	Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers. <i>Nano Letters</i> , 2012 , 12, 5703-7	11.5	64
217	Reversible chiral switching of bis(phthalocyaninato) terbium(III) on a metal surface. <i>Nano Letters</i> , 2012 , 12, 3931-5	11.5	63
216	Tuning the spin-transition properties of pyrene-decorated 2,6-bispyrazolylpyridine based Fe(II) complexes. <i>Dalton Transactions</i> , 2011 , 40, 7564-70	4.3	63
215	Self-Assembly of Nanoporous Chiral Networks with Varying Symmetry from Sexiphenyl-dicarbonitrile on Ag(111). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17851-17859	3.8	63

214	Tunable quantum dot arrays formed from self-assembled metal-organic networks. <i>Physical Review Letters</i> , 2011 , 106, 026802	7.4	62
213	Charge transport through a cardan-joint molecule. Small, 2008, 4, 2229-35	11	60
212	Characterization of a surface reaction by means of atomic force microscopy. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7424-8	16.4	59
211	A surface coordination network based on copper adatom trimers. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12955-9	16.4	58
210	Surface-assisted coordination chemistry and self-assembly. <i>Dalton Transactions</i> , 2006 , 2794-800	4.3	58
209	A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10341-10346	16.4	57
208	Assembling isostructural metal-organic coordination architectures on Cu(100), Ag(100) and Ag(111) substrates. <i>ChemPhysChem</i> , 2008 , 9, 2495-9	3.2	55
207	Surface-Confined Self-Assembly of Di-carbonitrile Polyphenyls. <i>Advanced Functional Materials</i> , 2011 , 1230-1240	15.6	54
206	Squaring the interface: "surface-assisted" coordination chemistry. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1594-6	16.4	52
205	Bis(R-bipyridyl)ruthenium bibenzimidazole complexes (R = H, Me or But): supramolecular arrangement via hydrogen bonds, photo- and electro-chemical properties and reactivity towards carbon dioxide. <i>Dalton Transactions RSC</i> , 2000 , 3649-3657		51
204	Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. <i>Physical Review Letters</i> , 2013 , 111, 037203	7.4	50
203	Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets. <i>ACS Nano</i> , 2013 , 7, 6225-36	16.7	49
202	Room temperature switching of a neutral molecular iron(II) complex. <i>Chemical Communications</i> , 2013 , 49, 10986-8	5.8	48
201	Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. <i>Nature Chemistry</i> , 2018 , 10, 296-304	17.6	47
200	STM spectroscopy of magnetic molecules. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 2387-2398	23.2	47
199	Conductance switching and vibrational fine structure of a $[2 \times 2]$ Co(II)(4) gridlike single molecule measured in a three-terminal device. <i>Small</i> , 2010 , 6, 174-8	11	46
198	Lattice-solvent controlled spin transitions in iron(II) complexes. Dalton Transactions, 2007, 3531-7	4.3	46
197	Self-Assembly, Structure and Solution Dynamics of Tetranuclear Zn2+ Hydrazone [20] Grid-Type Complexes. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 784-792	2.3	45

(2007-2019)

196	New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1806599	24	44	
195	Nuclear Spin Isomers: Engineering a Et N[DyPc] Spin Qudit. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9915-9919	16.4	43	
194	Using metal-organic templates to steer the growth of Fe and Co nanoclusters. <i>Applied Physics Letters</i> , 2008 , 93, 243102	3.4	43	
193	Surface-Confined Metal®rganic Nanostructures from Co-Directed Assembly of Linear Terphenyl-dicarbonitrile Linkers on Ag(111). <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15602-15606	3.8	42	
192	Charge-switchable molecular magnet and spin blockade of tunneling. <i>Physical Review B</i> , 2007 , 75,	3.3	42	
191	Surface confinement of TbPc-SMMs: structural, electronic and magnetic properties. <i>Dalton Transactions</i> , 2016 , 45, 18417-18433	4.3	41	
190	Coupling of single, double, and triple-decker metal-phthalocyanine complexes to ferromagnetic and antiferromagnetic substrates. <i>Surface Science</i> , 2014 , 630, 361-374	1.8	41	
189	Supramolecular lattice-solvent control of iron(II) spin transition parameters. <i>CrystEngComm</i> , 2010 , 12, 2361	3.3	41	
188	Conformational adaptation in supramolecular assembly on surfaces. <i>ChemPhysChem</i> , 2007 , 8, 1782-6	3.2	41	
187	Fixation of Carbon Dioxide by Oxalic Amidinato Magnesium Complexes: Structures and Reactions of Trimetallic Magnesium Carbamato and Related Complexes. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 1055-1064	2.3	41	
186	Exchange-bias quantum tunnelling in a CO-based Dy-single molecule magnet. <i>Chemical Science</i> , 2017 , 8, 1178-1185	9.4	40	
185	Molecular orbital gates for plasmon excitation. <i>Nano Letters</i> , 2013 , 13, 2846-50	11.5	40	
184	A luminescent PtFe spin crossover complex. <i>Dalton Transactions</i> , 2017 , 46, 2289-2302	4.3	39	
183	Synthesis, structures and magnetic properties of [(IJCH)Ln(IJCH)] super sandwich complexes. <i>Nature Communications</i> , 2019 , 10, 3135	17.4	39	
182	Hysteretic behaviour in a vacuum deposited submonolayer of single ion magnets. <i>Dalton Transactions</i> , 2014 , 43, 10686-9	4.3	39	
181	Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin. <i>Physical Review B</i> , 2013 , 87,	3.3	39	
180	Selective coordination bonding in metallo-supramolecular systems on surfaces. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4327-31	16.4	39	
179	Template-directed supramolecular self-assembly of coordination dumbbells at surfaces. <i>Chemical Communications</i> , 2007 , 4860-2	5.8	39	

178	Single-molecule devices with graphene electrodes. <i>Dalton Transactions</i> , 2016 , 45, 16570-16574	4.3	38
177	Steering On-Surface Self-Assembly of High-Quality Hydrocarbon Networks with Terminal Alkynes. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 3987-3995	3.8	38
176	Engineering On-Surface Spin Crossover: Spin-State Switching in a Self-Assembled Film of Vacuum-Sublimable Functional Molecule. <i>Advanced Materials</i> , 2018 , 30, 1705416	24	37
175	Divergent Coordination Chemistry: Parallel Synthesis of [2½] Iron(II) Grid-Complex Tauto-Conformers. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10881-5	16.4	37
174	Adsorption and dehydrogenation of tetrahydroxybenzene on Cu(111). <i>Chemical Communications</i> , 2013 , 49, 9308-10	5.8	37
173	The interplay of iron(II) spin transition and polymorphism. <i>Dalton Transactions</i> , 2012 , 41, 5163-71	4.3	36
172	Quantum Einstein-de Haas effect. <i>Nature Communications</i> , 2016 , 7, 11443	17.4	36
171	Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks. <i>Small</i> , 2015 , 11, 6358-6	411	34
170	Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films. <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 320-4	3	34
169	Giant Magnetoresistance in Carbon Nanotubes with Single-Molecule Magnets TbPc. <i>ACS Nano</i> , 2017 , 11, 6868-6880	16.7	33
168	Electrical Read-Out of a Single Spin Using an Exchange-Coupled Quantum Dot. ACS Nano, 2017, 11, 398	84 <u>1</u> 569/89	9 32
167	Unusual Deprotonated Alkynyl Hydrogen Bonding in Metal-Supported Hydrocarbon Assembly. Journal of Physical Chemistry C, 2015 , 119, 9669-9679	3.8	32
166	Spin-state dependent conductance switching in single molecule-graphene junctions. <i>Nanoscale</i> , 2018 , 10, 7905-7911	7.7	32
165	Zero-field splitting in pentacoordinate Co(II) complexes. <i>Polyhedron</i> , 2013 , 65, 122-128	2.7	32
164	1D and 2D Graphdiynes: Recent Advances on the Synthesis at Interfaces and Potential Nanotechnological Applications. <i>Annalen Der Physik</i> , 2017 , 529, 1700056	2.6	32
163	Uniform Ebystem Alignment in Thin Films of Template-Grown Dicarbonitrile-Oligophenyls. <i>Advanced Functional Materials</i> , 2011 , 21, 1631-1642	15.6	32
162	Does the surface matter? Hydrogen-bonded chain formation of an oxalic amide derivative in a two-and three-dimensional environment. <i>ChemPhysChem</i> , 2008 , 9, 2522-30	3.2	32
161	Copper Porphyrin as a Stable Cathode for High-Performance Rechargeable Potassium Organic Batteries. <i>ChemSusChem</i> , 2020 , 13, 2286-2294	8.3	31

160	Functionalized Graphdiyne Nanowires: On-Surface Synthesis and Assessment of Band Structure, Flexibility, and Information Storage Potential. <i>Small</i> , 2018 , 14, e1704321	11	31	
159	Spin-crossover in iron(ii)-Schiff base complexes. <i>Dalton Transactions</i> , 2019 , 48, 15321-15337	4.3	31	
158	Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules. <i>Nano Letters</i> , 2015 , 15, 6022-9	11.5	30	
157	Spin and charge dynamics in [TbPc2]0 and [DyPc2]0 single-molecule magnets. <i>Physical Review B</i> , 2010 , 82,	3.3	30	
156	An Iron(II) Spin-Transition Compound with Thiol Anchoring Groups. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2649-2653	2.3	30	
155	Quantum tunnelling of the magnetisation in single-molecule magnet isotopologue dimers. <i>Chemical Science</i> , 2019 , 10, 5138-5145	9.4	29	
154	Anion driven modulation of magnetic intermolecular interactions and spin crossover properties in an isomorphous series of mononuclear iron(III) complexes with a hexadentate Schiff base ligand. CrystEngComm, 2012, 14, 7015	3.3	28	
153	Above room temperature spin transition in a series of iron(II) bis(pyrazolyl)pyridine compounds. <i>Comptes Rendus Chimie</i> , 2008 , 11, 1166-1174	2.7	28	
152	Supramolecular Co(II)-[2 \times 2] grids: metamagnetic behavior in a single molecule. <i>Inorganic Chemistry</i> , 2006 , 45, 6535-40	5.1	28	
151	Synthetic Hilbert Space Engineering of Molecular Qudits: Isotopologue Chemistry. <i>Advanced Materials</i> , 2019 , 31, e1806687	24	28	
150	C-Au Covalently Bonded Molecular Junctions Using Nonprotected Alkynyl Anchoring Groups. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8465-9	16.4	27	
149	2 D Self-Assembly and Catalytic Homo-coupling of the Terminal Alkyne 1,4-Bis(3,5-diethynyl-phenyl)butadiyne-1,3 on Ag(111). <i>ChemCatChem</i> , 2013 , 5, 3281-3288	5.2	27	
148	Supramolecular organization and chiral resolution of p-terphenyl-m-dicarbonitrile on the Ag(111) surface. <i>ChemPhysChem</i> , 2010 , 11, 1446-51	3.2	27	
147	Spin-crossover and massive anisotropy switching of 5d transition metal atoms on graphene nanoflakes. <i>Nano Letters</i> , 2014 , 14, 3364-8	11.5	26	
146	Magnetic interplay between two different lanthanides in a tris-phthalocyaninato complex: a viable synthetic route and detailed investigation in the bulk and on the surface. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9794-9801	7.1	25	
145	Highly luminescent charge-neutral europium(iii) and terbium(iii) complexes with tridentate nitrogen ligands. <i>Dalton Transactions</i> , 2015 , 44, 15611-9	4.3	25	
144	Micro- and Nanopatterning of Spin-Transition Compounds into Logical Structures. <i>Angewandte Chemie</i> , 2008 , 120, 8724-8728	3.6	25	
143	Monitoring the Electrochemical Energy Storage Processes of an Organic Full Rechargeable Battery via Operando Raman Spectroscopy: A Mechanistic Study. <i>Chemistry of Materials</i> , 2019 , 31, 3239-3247	9.6	24	

142	A charge neutral iron(II) complex with an above room temperature spin crossover (SCO) and hysteresis loop. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11635-11644	7.1	24
141	Convergent and divergent two-dimensional coordination networks formed through substrate-activated or quenched alkynyl ligation. <i>Chemical Communications</i> , 2014 , 50, 9973-6	5.8	24
140	Mixed-valence heptanuclear iron complexes with ferromagnetic interaction. <i>Inorganic Chemistry</i> , 2012 , 51, 12755-67	5.1	24
139	Spin dynamics in the neutral rare-earth single-molecule magnets [TbPc2]0 and [DyPc2]0 from B R and NMR spectroscopies. <i>Physical Review B</i> , 2009 , 79,	3.3	24
138	Molekulare Spezies mit mehreren Ladungszustfiden: elektrochemische Reduktion eines Co-[2½]-Gitterkomplexes durch 11 Elektronen in 10 reversiblen Stufen. <i>Angewandte Chemie</i> , 2000 , 112, 4312-4315	3.6	24
137	Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility. <i>Advanced Materials</i> , 2017 , 29, 1703505	24	23
136	Understanding the Superior Stability of Single-Molecule Magnets on an Oxide Film. <i>Advanced Science</i> , 2019 , 6, 1901736	13.6	23
135	Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate. <i>Scientific Reports</i> , 2016 , 6, 21740	4.9	23
134	Competing Interactions in Surface Reticulation with a Prochiral Dicarbonitrile Linker. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 12858-12863	3.8	22
133	A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage. <i>Angewandte Chemie</i> , 2017 , 129, 10477-10482	3.6	21
132	Thermal and Photoinduced Spin Crossover in a Mononuclear Iron(II) Complex with a Bis(pyrazolyl)pyridine Type of Ligand. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 1049-1057	2.3	21
131	Submolekulare Adressierung der Metallzentren in einem [20]-CoII4-Gitterkomplex mittels STM/STS-Techniken. <i>Angewandte Chemie</i> , 2005 , 117, 8109-8113	3.6	21
130	Bi-stable spin-crossover characteristics of a highly distorted [Fe(1-BPP-COOCH)](ClO)ICHCN complex. <i>Dalton Transactions</i> , 2019 , 48, 3825-3830	4.3	21
129	Five mononuclear pentacoordinate Co(II) complexes with field-induced slow magnetic relaxation. <i>Polyhedron</i> , 2017 , 126, 174-183	2.7	20
128	Synthesizing Highly Regular Single-Layer Alkynyl-Silver Networks at the Micrometer Scale via Gas-Mediated Surface Reaction. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5087-5091	16.4	20
127	Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits. <i>Dalton Transactions</i> , 2016 , 45, 16596-16603	4.3	20
126	Exchange bias of TbPc2 molecular magnets on antiferromagnetic FeMn and ferromagnetic Fe films. <i>Physical Review B</i> , 2015 , 92,	3.3	20
125	Two- to one-dimensional transition of self-assembled coordination networks at surfaces by organic ligand addition. <i>Chemical Communications</i> , 2009 , 2502-4	5.8	20

124	Structural diversity in substituted-pyridinium iodo- and bromoplumbates: a matter of halide and temperature. <i>CrystEngComm</i> , 2016 , 18, 8207-8219	3.3	20	
123	One-Dimensionally Disordered Chiral Sorting by Racemic Tiling in a Surface-Confined Supramolecular Assembly of Achiral Tectons. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7797	7- 7 8 0 2	19	
122	Observation of Cooperative Electronic Quantum Tunneling: Increasing Accessible Nuclear States in a Molecular Qudit. <i>Inorganic Chemistry</i> , 2018 , 57, 9873-9879	5.1	19	
121	Polymorphism dependent light induced spin transition. <i>Dalton Transactions</i> , 2014 , 43, 16584-7	4.3	19	
120	Nanoparticles, Thin Films and Surface Patterns from Spin-Crossover Materials and Electrical Spin State Control 2013 , 375-404		19	
119	Spin-dependent electronic structure of the Co/Al(OP)3interface. New Journal of Physics, 2013, 15, 1130) 5<u>4</u>9	19	
118	Positioning of Single Co Atoms Steered by a Self-Assembled Organic Molecular Template. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1639-1645	6.4	19	
117	A spin crossover (SCO) active graphene-iron(ii) complex hybrid material. <i>Dalton Transactions</i> , 2018 , 47, 35-40	4.3	19	
116	Surface-Guided Formation of an Organocobalt Complex. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5754-9	16.4	18	
115	Surface induces different crystal structures in a room temperature switchable spin crossover compound. <i>Dalton Transactions</i> , 2016 , 45, 134-43	4.3	18	
114	Terminal Alkyne Coupling on a Corrugated Noble Metal Surface: From Controlled Precursor Alignment to Selective Reactions. <i>Chemistry - A European Journal</i> , 2017 , 23, 15588-15593	4.8	18	
113	Radical-lanthanide ferromagnetic interaction in a TbIII bis-phthalocyaninato complex. <i>Physical Review Materials</i> , 2018 , 2,	3.2	18	
112	Linking Electronic Transport through a Spin Crossover Thin Film to the Molecular Spin State Using X-ray Absorption Spectroscopy Operando Techniques. <i>ACS Applied Materials & Discourt Amplied Materials & Discourt & Discourt Materials & Discourt &</i>	9.5	18	
111	Tuning the magneto-optical response of TbPc2 single molecule magnets by the choice of the substrate. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8039-8049	7.1	17	
110	Bilayer of Terbium Double-Decker Single-Molecule Magnets. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 13581-13586	3.8	17	
109	High-resolution scanning tunneling and atomic force microscopy of stereochemically resolved dibenzo[a,h]thianthrene molecules. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 2424-2430	1.3	17	
108	Novel polypyridyl ruthenium(II) complexes containing oxalamidines as ligands. <i>Inorganica Chimica Acta</i> , 2000 , 303, 206-214	2.7	17	
107	Single-molecule magnet behavior in 2,2'-bipyrimidine-bridged dilanthanide complexes. <i>Beilstein Journal of Nanotechnology</i> , 2016 , 7, 126-37	3	17	

106	Solvent-Induced Polymorphism of Iron(II) Spin Crossover Complexes. <i>Materials</i> , 2016 , 9,	3.5	17
105	Probing magnetic coupling between LnPc (Ln = Tb, Er) molecules and the graphene/Ni (111) substrate with and without Au-intercalation: role of the dipolar field. <i>Nanoscale</i> , 2017 , 10, 277-283	7.7	16
104	Relay-Like Exchange Mechanism through a Spin Radical between TbPc Molecules and Graphene/Ni(111) Substrates. <i>ACS Nano</i> , 2016 , 10, 9353-9360	16.7	15
103	A Lithium-Free Energy-Storage Device Based on an Alkyne-Substituted-Porphyrin Complex. <i>ChemSusChem</i> , 2019 , 12, 3737-3741	8.3	15
102	Functionalization of Open Two-Dimensional Metal®rganic Templates through the Selective Incorporation of Metal Atoms. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8871-8877	3.8	15
101	Role of ERadicals in the Spin Connectivity of Clusters and Networks of Tb Double-Decker Single Molecule Magnets. <i>ACS Nano</i> , 2017 , 11, 10750-10760	16.7	14
100	Field-regulated switching of the magnetization of Co-porphyrin on graphene. <i>Physical Review B</i> , 2014 , 89,	3.3	14
99	(Polypyridyl)ruthenium(II) Complexes Based on a Back-to-Back Bis(pyrazolylpyridine) Bridging Ligand. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 53-61	2.3	14
98	Stereochemistry of coordination polyhedra vs. single ion magnetism in penta- and hexacoordinated Co(ii) complexes with tridentate rigid ligands. <i>Dalton Transactions</i> , 2020 , 49, 1249-1264	4.3	14
97	Direct Conversion of CO to Multi-Layer Graphene using Cu-Pd Alloys. <i>ChemSusChem</i> , 2019 , 12, 3509-35	18 .3	13
96	Kondo effect in binuclear metal-organic complexes with weakly interacting spins. <i>Physical Review B</i> , 2015 , 91,	3.3	13
95	Die Quadratur der Grenzflühe: Dberflühen-gestliztelKoordinationschemie. <i>Angewandte Chemie</i> , 2005 , 117, 1620-1623	3.6	13
		1	
94	Substitutional photoluminescence modulation in adducts of a europium chelate with a range of alkali metal cations: a gas-phase study. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 94-102	2.8	12
94		2.8	12
	alkali metal cations: a gas-phase study. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 94-102 Characterization of Nonanuclear Europium and Gadolinium Complexes by Gas-Phase Luminescence	6.4	
93	alkali metal cations: a gas-phase study. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 94-102 Characterization of Nonanuclear Europium and Gadolinium Complexes by Gas-Phase Luminescence Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1727-31	6.4 - 7 11.5	12
93 92	alkali metal cations: a gas-phase study. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 94-102 Characterization of Nonanuclear Europium and Gadolinium Complexes by Gas-Phase Luminescence Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1727-31 Dynamic control of plasmon generation by an individual quantum system. <i>Nano Letters</i> , 2014 , 14, 5693-	6.4 - 7 11.5	12

88	Low-energy spin dynamics in the [YPc2]0 S=12 antiferromagnetic chain. <i>Physical Review B</i> , 2011 , 83,	3.3	12
87	Ordering and Stabilization of Metal©rganic Coordination Chains by Hierarchical Assembly through Hydrogen Bonding at a Surface. <i>Angewandte Chemie</i> , 2008 , 120, 8967-8970	3.6	12
86	Polynuclear Iron(II) Complexes with 2,6-Bis(pyrazol-1-yl)pyridine-anthracene Ligands Exhibiting Highly Distorted High-Spin Centers. <i>Inorganic Chemistry</i> , 2019 , 58, 4310-4319	5.1	11
85	Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 2070-8	3	11
84	Ein Metall-organisches Netzwerk auf Basis von Cu-Adatom- Trimeren. <i>Angewandte Chemie</i> , 2014 , 126, 13169-13173	3.6	11
83	Spacer type mediated tunable spin crossover (SCO) characteristics of pyrene decorated 2,6-bis(pyrazol-1-yl)pyridine (bpp) based Fe(ii) molecular spintronic modules. <i>Dalton Transactions</i> , 2017 , 46, 9765-9768	4.3	11
82	Hierarchically organized bimolecular ladder network exhibiting guided one-dimensional diffusion. <i>ACS Nano</i> , 2012 , 6, 549-56	16.7	11
81	Generalized Ramsey interferometry explored with a single nuclear spin qudit. <i>Npj Quantum Information</i> , 2018 , 4,	8.6	11
80	CO2 Binding and Induced Structural Collapse of a Surface-Supported Metal Drganic Network. Journal of Physical Chemistry C, 2016 , 120, 18622-18630	3.8	10
79	Supramolecular Interaction Tuning of Spin-Crossover in Pyrene/Fullerene (C60) Tethered FeII-2,6-Di(pyrazol-1-yl)pyridine Complexes: Towards Switchable Molecular Devices. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 5091-5097	2.3	10
78	Enantiopure Benzamidinate/Cyclooctatetraene Complexes of the Rare-Earth Elements: Synthesis, Structure, and Magnetism. <i>Organometallics</i> , 2018 , 37, 3708-3717	3.8	10
77	Ultra-narrow optical linewidths in rare-earth molecular crystals <i>Nature</i> , 2022 , 603, 241-246	50.4	10
76	Divergente Koordinationschemie: Parallele Synthese von [2½]-Eisen(II)-Gitterkomplextautokonformeren. <i>Angewandte Chemie</i> , 2016 , 128, 11040-11044	3.6	9
75	On-surface structural and electronic properties of spontaneously formed TbPc single molecule magnets. <i>Nanoscale</i> , 2018 , 10, 15553-15563	7.7	9
74	Strong electronic correlations in LixZnPc organic metals. <i>Physical Review Letters</i> , 2008 , 100, 117601	7.4	9
73	Self-assembly of bis(phthalocyaninato)terbium on metal surfaces. <i>Physica Scripta</i> , 2015 , 90, 098003	2.6	8
72	Conductive Metal-Organic Framework Thin Film Hybrids by Electropolymerization of Monosubstituted Acetylenes. <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> . <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> . <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> . <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> . <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> . <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> . <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> . <i>ACS Applied Materials & Description of Monosubstituted Acetylenes</i> .	9.5	8
71	Heteronuclear Iron(III)-Schiff Base Complexes with the Hexacyanidocobaltate(III) Anion: On the Quest To Understand the Governing Factors of Spin Crossover. <i>Inorganic Chemistry</i> , 2020 , 59, 2747-275	7 ^{5.1}	8

70	Characterization of the light induced excited spin state of a heterometallic FePt2 complex by high-field MBsbauer spectroscopy. <i>Hyperfine Interactions</i> , 2017 , 238, 1	0.8	8
69	Time- and space-modulated Raman signals in graphene-based optical cavities. <i>Journal of Optics</i> (United Kingdom), 2013 , 15, 114010	1.7	8
68	A Self-Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries. <i>ChemSusChem</i> , 2021 , 14, 1840-1846	8.3	8
67	Screening the 4f-electron spin of TbPc single-molecule magnets on metal substrates by ligand channeling. <i>Nanoscale</i> , 2019 , 11, 21167-21179	7.7	8
66	Sublimierbare Spin-Crossover-Komplexe: Vom Schalten des Spinzustands zu molekularen Bauelementen. <i>Angewandte Chemie</i> , 2021 , 133, 7578-7598	3.6	8
65	Ho-Mediated Alkyne Reactions at Low Temperatures on Ag(111). <i>Chemistry - A European Journal</i> , 2018 , 24, 16126-16135	4.8	8
64	Epitaxy-Induced Assembly and Enantiomeric Switching of an On-Surface Formed Dinuclear Organocobalt Complex. <i>ACS Nano</i> , 2017 , 11, 1347-1359	16.7	7
63	Bis(phthalocyaninato) Lanthanide(III) Complexes [from Molecular Magnetism to Spintronic Devices 2015 , 223-292		7
62	Opposite Surface and Bulk Solvatochromic Effects in a Molecular Spin-Crossover Compound Revealed by Ambient Pressure X-ray Absorption Spectroscopy. <i>Langmuir</i> , 2018 , 34, 3604-3609	4	7
61	Low spin Fe(II) complexes formed of monosubstitued 2,6-bis(2-benzimidazolyl)pyridine ligands. <i>Polyhedron</i> , 2017 , 123, 122-131	2.7	7
60	Color theory in science and art: Ostwald and the Bauhaus. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4842-6	16.4	7
59	Magneto-structural correlations in self-assembled spin-transition nano-architectures of the [Fe4IIL4]n+[20]-grid-type. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, E715-E717	2.8	7
58	Bi-stable spin-crossover in charge-neutral [Fe(R-ptp)] (ptp = 2-(1H-pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine) complexes. <i>Dalton Transactions</i> , 2020 , 49, 1022-1031	4.3	7
57	Correlation of the structural information obtained for europium-chelate ensembles from gas-phase photoluminescence and ion-mobility spectroscopy with density-functional computations and ligand-field theory. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 6105-6112	3.6	6
56	One-Dimensionally Disordered Chiral Sorting by Racemic Tiling in a Surface-Confined Supramolecular Assembly of Achiral Tectons. <i>Angewandte Chemie</i> , 2017 , 129, 7905-7910	3.6	6
55	Single-Molecule Magnets: Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator (Adv. Mater. 26/2016). <i>Advanced Materials</i> , 2016 , 28, 5142	24	6
54	Homoleptic Chiral Benzamidinate Complexes of Rare-Earth Elements: Synthesis, Structure, Luminescence, and Magnetism. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 5512-5518	2.3	6
53	Meta-Positioning of Carbonitrile Functional Groups Induces Interfacial Edge-On Phase of Oligophenyl Derivatives. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2622-2633	3.8	6

(2014-2015)

52	Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation. <i>Beilstein Journal of Nanotechnology</i> , 2015 , 6, 1107-15	3	6
51	Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111). <i>Beilstein Journal of Nanotechnology</i> , 2015 , 6, 327-35	3	6
50	Pressure-Modulated Broadband Emission in 2D Layered Hybrid Perovskite-Like Bromoplumbate. <i>Inorganic Chemistry</i> , 2020 , 59, 12431-12436	5.1	6
49	Optical spin-state polarization in a binuclear europium complex towards molecule-based coherent light-spin interfaces. <i>Nature Communications</i> , 2021 , 12, 2152	17.4	6
48	Photoisomerization of Bis(tridentate) 2,6-Bis(1H-pyrazol-1-yl)pyridine Ligands Exhibiting a Multi-anthracene Skeleton. <i>Chemistry - A European Journal</i> , 2017 , 23, 10100-10109	4.8	5
47	On-Surface Activation of Trimethylsilyl-Terminated Alkynes on Coinage Metal Surfaces. <i>ChemPhysChem</i> , 2019 , 20, 2382-2393	3.2	5
46	Iron in a Cage: Fixation of a Fe(II)tpy Complex by Fourfold Interlinking. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15947-15952	16.4	5
45	Polymorphism and metal-induced structural transformation in 5,5'-bis(4-pyridyl)(2,2'-bispyrimidine) adlayers on Au(111). <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 15960-15969	3.6	5
44	The self-assembly and metal adatom coordination of a linear bis-tetrazole ligand on Ag(111). <i>Chemical Communications</i> , 2018 , 54, 10072-10075	5.8	5
43	Surface-Guided Formation of an Organocobalt Complex. <i>Angewandte Chemie</i> , 2016 , 128, 5848-5853	3.6	5
42	Magnetic properties of transition metal dimers probed by inelastic neutron scattering. <i>Dalton Transactions</i> , 2018 , 47, 11953-11959	4.3	4
41	Unraveling the Hierarchic Formation of Open-porous Bimolecular Networks. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16421-16429	3.8	4
40	Introduction of plumbole to f-element chemistry Chemical Science, 2022, 13, 945-954	9.4	4
39	Bistable spin-crossover in a new series of [Fe(BPP-R)] (BPP = 2,6-bis(pyrazol-1-yl)pyridine; R = CN) complexes. <i>Dalton Transactions</i> , 2020 , 49, 14258-14267	4.3	4
38	Surface-Dependent Chemoselectivity in C-C Coupling Reactions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8356-8361	16.4	3
37	Microwave-assisted reversal of a single electron spin. <i>Journal of Applied Physics</i> , 2019 , 125, 142801	2.5	3
36	Controlled manipulation of the Co-Alq interface by rational design of Alq derivatives. <i>Dalton Transactions</i> , 2016 , 45, 18365-18376	4.3	3
35	The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 1664-1674	3	3

34	Photoluminescence Spectroscopy of Mass-Selected Electrosprayed Ions Embedded in Cryogenic Rare-Gas Matrixes. <i>Analytical Chemistry</i> , 2015 , 87, 11901-6	7.8	3
33	Mass spectrometric characterization of a dinuclear terbium phthalocyaninato complex. <i>International Journal of Mass Spectrometry</i> , 2012 , 325-327, 183-188	1.9	3
32	Phenalenyl-based mononuclear dysprosium complexes. <i>Beilstein Journal of Nanotechnology</i> , 2016 , 7, 995-1009	3	3
31	Spin-crossover in iron(II)-phenylene ethynylene-2,6-di(pyrazol-1-yl) pyridine hybrids: toward switchable molecular wire-like architectures. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 204002	1.8	2
30	Influence of the charge of the complex unit on the SCO properties in pyrazolyl-pyridinyl-benzimidazole based Fe(II) complexes. <i>Polyhedron</i> , 2017 , 135, 189-194	2.7	2
29	Structural Insights into Hysteretic Spin-Crossover in a Set of Iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) Complexes <i>Chemistry - A European Journal</i> , 2021 ,	4.8	2
28	Ditopic Hexadentate Ligands with a Central Dihydrobenzo-diimidazole Unit Forming a [2x2] Zn4 Grid Complex. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 2301-2310	3.2	2
27	Thermal- and Light-Induced Spin-Crossover Characteristics of a Functional Iron(II) Complex at Submonolayer Coverage on HOPG. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 13925-13932	3.8	2
26	Chiral Resolution of Spin-Crossover Active Iron(II) [2x2] Grid Complexes. <i>Chemistry - A European Journal</i> , 2021 , 27, 15171-15179	4.8	2
25	Ni -Containing 54-Tungsto-6-Silicate: Synthesis, Structure, Magnetic and Electrochemical Studies. <i>Chemistry - A European Journal</i> , 2021 , 27, 15080-15084	4.8	2
24	Rotation in an Enantiospecific Self-Assembled Array of Molecular Raffle Wheels. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	2
23	Low-energy excitations in electron-doped metal phthalocyanines. <i>Physica B: Condensed Matter</i> , 2008 , 403, 1523-1525	2.8	1
22	Synthesis, structure and physical characterization of the dimer {[(bpy)2Co]2(TPOA)}4+ (bpy = 2,2?-dipyridyl; H2TPOA = N,N?,N??,N???-tetraphenyl oxalamidine). <i>Journal of Molecular Structure</i> , 2008 , 890, 272-276	3.4	1
21	Charge-induced modulation of magnetic interactions in a [2 I2] metal-organic grid complex. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 994-1000	2.1	1
20	Supramolecular Spintronic Devices: Spin Transitions and Magnetostructural Correlations in [Fe4IIL4]8+ [20]-Grid-Type Complexes. <i>Chemistry - A European Journal</i> , 2003 , 9, 5176-5176	4.8	1
19	Visualization of structural changes and degradation of porphyrin-based battery electrodes. <i>Journal of Power Sources</i> , 2022 , 522, 231002	8.9	1
18	Room-temperature spin nutations in a magnetically condensed phase of [Y(pc)][IChemical Communications, 2021 , 57, 11505-11508	5.8	1
17	Light-induced spin transition in the spin-crossover complex FePt2 detected by optical pump -coherent resonant nuclear elastic scattering. <i>Hyperfine Interactions</i> , 2020 , 241, 1	0.8	1

2

Conference Series, **2010**, 200, 012033

Single Molecule Machines, 2017, 165-184

Molecular Devices 2021, 206-240 16 1 Increasing the Hilbert space dimension using a single coupled molecular spin. Nature 17.4 Communications, 2021, 12, 4443 Size-Controlled Hapticity Switching in [Ln(C H)(C H)] Sandwiches. Chemistry - A European Journal, 4.8 1 14 **2021**, 27, 13558-13567 Indirect Spin-Readout of Rare-Earth-Based Single-Molecule Magnet with Scanning Tunneling 13 7.4 Microscopy. Physical Review Letters, 2021, 127, 123201 A Tetranuclear Dysprosium Schiff Base Complex Showing Slow Relaxation of Magnetization. 12 2.9 1 Inorganics, 2022, 10, 66 Quantum Tunneling Mediated Interfacial Synthesis of a Benzofuran Derivative. Angewandte Chemie 16.4 11 - International Edition, **2019**, 58, 11285-11290 Iron in a Cage: Fixation of a Fe(II)tpy2 Complex by Fourfold Interlinking. Angewandte Chemie, 2020, 3.6 O 10 132, 16081-16086 Heteroleptic, polynuclear dysprosium(iii)-carbamato complexes through in situ carbon dioxide 9 4.3 capture. Dalton Transactions, 2021, 50, 4735-4742 Terminal Ligand and Packing Effects on Slow Relaxation in an Isostructural Set of [Dy(H dapp)X] 8 4.8 Ο Single Molecule Magnets*. Chemistry - A European Journal, 2021, 27, 15085-15094 Spin-Crossover in Supramolecular Iron(II)-2,6-bis(1-Pyrazol-1-yl)pyridine Complexes: Toward 3.9 Spin-State Switchable Single-Molecule Junctions.. ACS Omega, 2022, 7, 13654-13666 6 Surface-Dependent Chemoselectivity in Cl Coupling Reactions. Angewandte Chemie, 2019, 131, 8444 3.6 Quantum Tunneling Mediated Interfacial Synthesis of a Benzofuran Derivative. Angewandte Chemie 3.6 , **2019**, 131, 11407 Molecular materials - towards quantum properties. Beilstein Journal of Nanotechnology, 2015, 6, 1485-6 3 Self-Assembly of Supramolecular Nanostructures: Ordered Arrays of Metal Ions and Carbon Nanotubes327-348

Strong electronic correlations in LixM(Pc,Nc) organic conductors near half filling. Journal of Physics:

Addressing a Single Molecular Spin with Graphene-Based Nanoarchitectures. Advances in Atom and

0.3