Sei Kwang Hahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089308/publications.pdf

Version: 2024-02-01

		23544	36008
176	10,747	58	97
papers	citations	h-index	g-index
183	183	183	14982
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. Journal of Controlled Release, 2010, 141, 2-12.	4.8	468
2	In situ-forming injectable hydrogels for regenerative medicine. Progress in Polymer Science, 2014, 39, 1973-1986.	11.8	435
3	Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials, 2020, 5, 149-165.	23.3	403
4	Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nature Photonics, 2013, 7, 987-994.	15.6	287
5	Wireless smart contact lens for diabetic diagnosis and therapy. Science Advances, 2020, 6, eaba3252.	4.7	255
6	Bioorthogonal Copperâ€Free Click Chemistry Inâ€Vivo for Tumorâ€Targeted Delivery of Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 11836-11840.	7.2	235
7	<i>In Situ</i> Supramolecular Assembly and Modular Modification of Hyaluronic Acid Hydrogels for 3D Cellular Engineering. ACS Nano, 2012, 6, 2960-2968.	7.3	229
8	Nanographene Oxide–Hyaluronic Acid Conjugate for Photothermal Ablation Therapy of Skin Cancer. ACS Nano, 2014, 8, 260-268.	7.3	208
9	Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication, 2016, 8, 014102.	3.7	200
10	Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology and Bioengineering, 1994, 44, 256-261.	1.7	196
11	Single-File Diffusion of Protein Drugs through Cylindrical Nanochannels. ACS Nano, 2010, 4, 3817-3822.	7.3	187
12	Hyaluronate–Gold Nanoparticle/Tocilizumab Complex for the Treatment of Rheumatoid Arthritis. ACS Nano, 2014, 8, 4790-4798.	7.3	178
13	Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nature Communications, 2016, 7, 10374.	5.8	173
14	Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydrate Polymers, 2007, 70, 251-257.	5.1	166
15	Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation., 1997, 55, 28-32.		162
16	Bioimaging of Hyaluronic Acid Derivatives Using Nanosized Carbon Dots. Biomacromolecules, 2012, 13, 2554-2561.	2.6	162
17	Target Specific Intracellular Delivery of siRNA/PEIâ^'HA Complex by Receptor Mediated Endocytosis. Molecular Pharmaceutics, 2009, 6, 727-737.	2.3	159
18	Hyaluronic Acidâ^'Quantum Dot Conjugates for <i>In Vivo</i> Lymphatic Vessel Imaging. ACS Nano, 2009, 3, 1389-1398.	7.3	157

#	Article	IF	CITATIONS
19	Photonic hydrogel sensors. Biotechnology Advances, 2016, 34, 250-271.	6.0	157
20	Hyaluronic Acid–Gold Nanoparticle/Interferon α Complex for Targeted Treatment of Hepatitis C Virus Infection. ACS Nano, 2012, 6, 9522-9531.	7. 3	149
21	Target-Specific Gene Silencing of Layer-by-Layer Assembled Gold–Cysteamine/siRNA/PEI/HA Nanocomplex. ACS Nano, 2011, 5, 6138-6147.	7.3	145
22	Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers, 2008, 89, 635-642.	1.2	141
23	Hyaluronate and its derivatives for customized biomedical applications. Biomaterials, 2017, 123, 155-171.	5.7	139
24	Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy. Theranostics, 2016, 6, 2196-2208.	4.6	138
25	Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. Advanced Materials, 2018, 30, 1701460.	11.1	137
26	Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. Journal of Controlled Release, 2005, 104, 323-335.	4.8	135
27	Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosensors and Bioelectronics, 2009, 24, 1801-1805.	5.3	133
28	Bioimaging for Targeted Delivery of Hyaluronic Acid Derivatives to the Livers in Cirrhotic Mice Using Quantum Dots. ACS Nano, 2010, 4, 3005-3014.	7. 3	127
29	Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine–hyaluronic acid conjugate. Biomaterials, 2010, 31, 5258-5265.	5.7	125
30	Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomaterialia, 2011, 7, 666-674.	4.1	114
31	Photodynamic therapy of melanoma skin cancer using carbon dot – chlorin e6 – hyaluronate conjugate. Acta Biomaterialia, 2015, 26, 295-305.	4.1	110
32	Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal Fillers on Tissue Augmentation and Regeneration. Bioconjugate Chemistry, 2010, 21, 240-247.	1.8	109
33	The Topographic Effect of Zinc Oxide Nanoflowers on Osteoblast Growth and Osseointegration. Advanced Materials, 2010, 22, 4857-4861.	11.1	107
34	Transdermal delivery of hyaluronic acid – Human growth hormone conjugate. Biomaterials, 2012, 33, 5947-5954.	5.7	103
35	3D Tissue Engineered Supramolecular Hydrogels for Controlled Chondrogenesis of Human Mesenchymal Stem Cells. Biomacromolecules, 2014, 15, 707-714.	2.6	102
36	Anti-inflammatory drug delivery from hyaluronic acid hydrogels. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1111-1119.	1.9	98

#	Article	IF	Citations
37	Solid Freeâ€Form Fabrication of Tissueâ€Engineering Scaffolds with a Poly(lacticâ€coâ€glycolic acid) Grafted Hyaluronic Acid Conjugate Encapsulating an Intact Bone Morphogenetic Protein–2/Poly(ethylene) Tj ETQq1	1 0.7%4314 ı	rg∰3 Overlo
38	Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomedical Microdevices, 2008, 10, 233-241.	1.4	92
39	Urease-Powered Polydopamine Nanomotors for Intravesical Therapy of Bladder Diseases. ACS Nano, 2020, 14, 6683-6692.	7.3	88
40	Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications. Acta Biomaterialia, 2009, 5, 3394-3403.	4.1	86
41	Synthesis and degradation test of hyaluronic acid hydrogels. International Journal of Biological Macromolecules, 2007, 40, 374-380.	3.6	85
42	Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. Journal of Biomedical Materials Research - Part A, 2008, 86A, 685-693.	2.1	85
43	Hyaluronateâ€"Epidermal Growth Factor Conjugate for Skin Wound Healing and Regeneration. Biomacromolecules, 2016, 17, 3694-3705.	2.6	84
44	Surface Modification of Multipass Caliber-Rolled Ti Alloy with Dexamethasone-Loaded Graphene for Dental Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9598-9607.	4.0	82
45	Upconversion Nanoparticles/Hyaluronate–Rose Bengal Conjugate Complex for Noninvasive Photochemical Tissue Bonding. ACS Nano, 2017, 11, 9979-9988.	7.3	81
46	The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology, 2009, 20, 235501.	1.3	76
47	Long acting hyaluronate – exendin 4 conjugate for the treatment of type 2 diabetes. Biomaterials, 2010, 31, 4121-4128.	5.7	73
48	Bioluminescence-Activated Deep-Tissue Photodynamic Therapy of Cancer. Theranostics, 2015, 5, 805-817.	4.6	72
49	Biodegradable Photonic Melanoidin for Theranostic Applications. ACS Nano, 2016, 10, 822-831.	7.3	69
50	In vivo realâ€time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers, 2008, 89, 1144-1153.	1.2	67
51	In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acidâ€Conjugated Silica Nanoparticles. Advanced Functional Materials, 2018, 28, 1800941.	7.8	66
52	Hyaluronic Acid Derivatives for Translational Medicines. Biomacromolecules, 2019, 20, 2889-2903.	2.6	66
53	Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. International Journal of Pharmaceutics, 2006, 322, 44-51.	2.6	64
54	Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. Biomaterials, 2013, 34, 542-551.	5.7	64

#	Article	IF	CITATIONS
55	Light-Guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2338-2346.	4.0	64
56	Microneedle Biosensor for Realâ€Time Electrical Detection of Nitric Oxide for In Situ Cancer Diagnosis During Endomicroscopy. Advanced Healthcare Materials, 2015, 4, 1153-1158.	3.9	63
57	Supramolecular Hydrogels for Longâ€√erm Bioengineered Stem Cell Therapy. Advanced Healthcare Materials, 2015, 4, 237-244.	3.9	62
58	Theranostic systems assembled in situ on demand by host-guest chemistry. Biomaterials, 2011, 32, 7687-7694.	5.7	60
59	Anti-Flt1 peptide – Hyaluronate conjugate for the treatment of retinal neovascularization and diabetic retinopathy. Biomaterials, 2011, 32, 3115-3123.	5.7	59
60	Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology, 2016, 64, 209-223.	3.6	59
61	Target specific systemic delivery of TGF- \hat{l}^2 siRNA/(PEI-SS)-g-HA complex for the treatment of liver cirrhosis. Biomaterials, 2011, 32, 4951-4958.	5.7	58
62	Synthesis, characterization, and preliminary assessment of anti-Flt1 peptide–hyaluronate conjugate for the treatment of corneal neovascularization. Biomaterials, 2009, 30, 6026-6034.	5.7	55
63	Characterization and In Vivo Study of Sustained-Release Formulation of Human Growth Hormone Using Sodium Hyaluronate. Pharmaceutical Research, 2004, 21, 1374-1381.	1.7	54
64	Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC Advances, 2019, 9, 16578-16585.	1.7	54
65	Nano graphene oxide–hyaluronic acid conjugate for target specific cancer drug delivery. RSC Advances, 2014, 4, 14197.	1.7	52
66	Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant. Advanced Functional Materials, 2016, 26, 2512-2522.	7.8	52
67	Target specific hyaluronic acid–interferon alpha conjugate for the treatment of hepatitis C virus infection. Biomaterials, 2011, 32, 8722-8729.	5.7	51
68	Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation of erythropoietin. Journal of Biomedical Materials Research - Part A, 2006, 78A, 459-465.	2.1	50
69	Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Longâ€Term Robust Continuous Glucose Monitoring of Smart Contact Lens. Advanced Materials, 2022, 34, e2110536.	11.1	48
70	Bioorthogonal Click Chemistry-Based Synthetic Cell Glue. Small, 2015, 11, 6458-6466.	5.2	47
71	Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors. Lab on A Chip, 2010, 10, 2052.	3.1	46
72	Flt1 peptide–hyaluronate conjugate micelle-like nanoparticles encapsulating genistein for the treatment of ocular neovascularization. Acta Biomaterialia, 2012, 8, 3932-3940.	4.1	46

#	Article	IF	CITATIONS
73	The recovery of poly(3-hydroxybutyrate) by using dispersions of sodium hypochlorite solution and chloroform. Biotechnology Letters, 1993, 7, 209-212.	0.5	45
74	Cationic derivatives of biocompatible hyaluronic acids for delivery of siRNA and antisense oligonucleotides. Journal of Drug Targeting, 2009, 17, 123-132.	2.1	45
75	Biodegradable Microneedle Patch Delivering Antigenic Peptide–Hyaluronate Conjugate for Cancer Immunotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 5150-5158.	2.6	45
76	Reducible Hyaluronic Acid–siRNA Conjugate for Target Specific Gene Silencing. Bioconjugate Chemistry, 2013, 24, 1201-1209.	1.8	44
77	Hyaluronic acid–tumor necrosis factor-related apoptosis-inducing ligand conjugate for targeted treatment of liver fibrosis. Acta Biomaterialia, 2015, 12, 174-182.	4.1	43
78	DNA/PEI/Alginate polyplex as an efficientin vivo gene delivery system. Biotechnology and Bioprocess Engineering, 2007, 12, 684-689.	1.4	42
79	Hyaluronate–Gold Nanoparticle/Glucose Oxidase Complex for Highly Sensitive Wireless Noninvasive Glucose Sensors. ACS Applied Materials & Amp; Interfaces, 2019, 11, 37347-37356.	4.0	42
80	Signal Transduction of Hyaluronic Acidâ^'Peptide Conjugate for Formyl Peptide Receptor Like 1 Receptor. Bioconjugate Chemistry, 2008, 19, 2401-2408.	1.8	39
81	Effect of Thermal Degradation of SFF-Based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1069-1080.	1.9	38
82	Luciferase–Rose Bengal conjugates for singlet oxygen generation by bioluminescence resonance energy transfer. Chemical Communications, 2017, 53, 4569-4572.	2.2	38
83	Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy, 2018, 51, 102-112.	8.2	37
84	Injectable hyaluronic acid microhydrogels for controlled release formulation of erythropoietin. Journal of Biomedical Materials Research - Part A, 2007, 80A, 916-924.	2.1	35
85	Hyaluronate–Gold Nanorod/DR5 Antibody Complex for Noninvasive Theranosis of Skin Cancer. ACS Applied Materials & Skin Cancer. ACS Applied Materials & Skin Cancer. ACS	4.0	35
86	Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioactive Materials, 2022, 9, 54-62.	8.6	35
87	Noncovalenly PEGylated CTGF siRNA/PDMAEMA complex for pulmonary treatment of bleomycin-induced lung fibrosis. Biomaterials, 2013, 34, 1261-1269.	5.7	33
88	Targeted Hyaluronate–Hollow Gold Nanosphere Conjugate for Anti-Obesity Photothermal Lipolysis. ACS Biomaterials Science and Engineering, 2017, 3, 3646-3653.	2.6	33
89	Nanoscale graphene coating on commercially pure titanium for accelerated bone regeneration. RSC Advances, 2016, 6, 26719-26724.	1.7	32
90	Bioimaging and pulmonary applications of self-assembled Flt1 peptide–hyaluronic acid conjugate nanoparticles. Biomaterials, 2013, 34, 8478-8490.	5.7	31

#	Article	IF	CITATIONS
91	Dualâ€Colorâ€Emitting Carbon Nanodots for Multicolor Bioimaging and Optogenetic Control of Ion Channels. Advanced Science, 2017, 4, 1700325.	5. 6	31
92	Effect of hyaluronic acid molecular weight on the morphology of quantum dot–hyaluronic acid conjugates. International Journal of Biological Macromolecules, 2008, 42, 41-45.	3.6	30
93	A Smart Contact Lens Controller IC Supporting Dual-Mode Telemetry With Wireless-Powered Backscattering LSK and EM-Radiated RF Transmission Using a Single-Loop Antenna. IEEE Journal of Solid-State Circuits, 2020, 55, 856-867.	3.5	30
94	Molecular design of hyaluronic acid hydrogel networks for long-term controlled delivery of human growth hormone. Soft Matter, 2011, 7, 868.	1.2	28
95	Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials, 2021, 279, 121201.	5.7	28
96	Superior Pre-Osteoblast Cell Response of Etched Ultrafine-Grained Titanium with a Controlled Crystallographic Orientation. Scientific Reports, 2017, 7, 44213.	1.6	27
97	Enhancing the transdermal penetration of nanoconstructs: could hyaluronic acid be the key?. Nanomedicine, 2014, 9, 743-745.	1.7	26
98	Synergistic effects of hyaluronate – epidermal growth factor conjugate patch on chronic wound healing. Biomaterials Science, 2018, 6, 1020-1030.	2.6	26
99	Multimodal Cancer Theranosis Using Hyaluronateâ€Conjugated Molybdenum Disulfide. Advanced Healthcare Materials, 2019, 8, e1801036.	3.9	26
100	Preparation and characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-l-lysine. International Journal of Biological Macromolecules, 2005, 37, 227-231.	3.6	25
101	Tocilizumab–Alendronate Conjugate for Treatment of Rheumatoid Arthritis. Bioconjugate Chemistry, 2017, 28, 1084-1092.	1.8	25
102	Multifunctional Nanodroplets Encapsulating Naphthalocyanine and Perfluorohexane for Bimodal Image-Guided Therapy. Biomacromolecules, 2019, 20, 3767-3777.	2.6	25
103	Supramolecular Injectable Hyaluronate Hydrogels for Cartilage Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 5040-5047.	2.3	25
104	Effect of osteoconductive hyaluronate hydrogels on calvarial bone regeneration. Biomaterials Research, 2014, 18, 8.	3.2	24
105	Multifunctional hyaluronate – nanoparticle hybrid systems for diagnostic, therapeutic and theranostic applications. Journal of Controlled Release, 2019, 303, 55-66.	4.8	24
106	Smart Contact Lenses with a Transparent Silver Nanowire Strain Sensor for Continuous Intraocular Pressure Monitoring. ACS Applied Bio Materials, 2021, 4, 4532-4541.	2.3	24
107	Supramolecular host-guest hyaluronic acid hydrogels enhance corneal wound healing through dynamic spatiotemporal effects. Ocular Surface, 2022, 23, 148-161.	2.2	24
108	Multimerized siRNA Cross-linked by Gold Nanoparticles. Bioconjugate Chemistry, 2011, 22, 1962-1969.	1.8	23

#	Article	IF	Citations
109	In vivo real-time confocal microscopy for target-specific delivery of hyaluronic acid-quantum dot conjugates. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1070-1073.	1.7	23
110	Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromolecular Research, 2012, 20, 277-282.	1.0	23
111	Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy. RSC Advances, 2021, 11, 10393-10399.	1.7	22
112	Smart Wireless Nearâ€Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy. Advanced Science, 2022, 9, e2103254.	5.6	22
113	Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnology and Bioprocess Engineering, 2005, 10, 218-224.	1.4	21
114	Self-assembled complex of probe peptide $\hat{a}\in$ E. Coli RNA I conjugate and nano graphene oxide for apoptosis diagnosis. Biomaterials, 2012, 33, 7556-7564.	5.7	21
115	Genetically engineered mesenchymal stem cell therapy using self-assembling supramolecular hydrogels. Journal of Controlled Release, 2015, 220, 119-129.	4.8	21
116	Self-adjuvanted hyaluronate – antigenic peptide conjugate for transdermal treatment of muscular dystrophy. Biomaterials, 2016, 81, 93-103.	5.7	21
117	A themogravimetric analysis for poly(3-hydroxybutyrate) quantification. Biotechnology Letters, 1995, 9, 873-878.	0.5	20
118	Bioimaging of Hyaluronate–Interferon α Conjugates Using a Non-Interfering Zwitterionic Fluorophore. Biomacromolecules, 2015, 16, 3054-3061.	2.6	20
119	Degradable Nanomotors Using Platinum Deposited Complex of Calcium Carbonate and Hyaluronate Nanogels for Targeted Drug Delivery. Particle and Particle Systems Characterization, 2020, 37, 1900418.	1.2	20
120	Biocompatible Organosilica Nanoparticles with Self-Encapsulated Phenyl Motifs for Effective UV Protection. ACS Applied Materials & Interfaces, 2020, 12, 9062-9069.	4.0	20
121	Nose-to-brain delivery of hyaluronate – FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy. Journal of Controlled Release, 2019, 307, 76-89.	4.8	19
122	Facile Surface Modification and Application of Temperature Responsive Poly(<i>N</i> à€isopropylacrylamideâ€ <i>co</i> àêdopamine methacrylamide). Macromolecular Chemistry and Physics, 2012, 213, 2130-2135.	1.1	18
123	Upconversion nanoparticles coated organic photovoltaics for near infrared light controlled drug delivery systems. Nano Energy, 2021, 81, 105650.	8.2	18
124	Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS Applied Bio Materials, 2021, 4, 8110-8128.	2.3	17
125	Characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-l-lysine. Biotechnology and Bioprocess Engineering, 2004, 9, 179-183.	1.4	15
126	Controlled Detachment of Chemically Glued Cells. Bioconjugate Chemistry, 2016, 27, 2601-2604.	1.8	15

#	Article	IF	Citations
127	Smart Microbubble Eluting Theranostic Stent for Noninvasive Ultrasound Imaging and Prevention of Restenosis. Small, 2017, 13, 1602925.	5.2	15
128	Molybdenum Disulfide Surface Modification of Ultrafine-Grained Titanium for Enhanced Cellular Growth and Antibacterial Effect. Scientific Reports, 2018, 8, 9907.	1.6	14
129	The lysis of gram-negative Alcaligenes eutrophus and Alcaligenes latus by palmitoyl carnitine. Biotechnology Letters, 1993, 7, 295-300.	0.5	13
130	Synchrotron X-Ray Bioimaging of Bone Regeneration by Artificial Bone Substitute of MegaGen Synthetic Bone and Hyaluronate Hydrogels. Tissue Engineering - Part C: Methods, 2010, 16, 1059-1068.	1.1	13
131	Improved synthesis of hyaluronic acid hydrogel and its effect on tissue augmentation. Journal of Biomaterials Applications, 2012, 27, 179-186.	1.2	13
132	Defect-Induced Fluorescence of Silica Nanoparticles for Bioimaging Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44247-44256.	4.0	13
133	Targeted systemic mesenchymal stem cell delivery using hyaluronate – wheat germ agglutinin conjugate. Biomaterials, 2016, 106, 217-227.	5.7	12
134	Biomimetic Supramolecular Drug Delivery Hydrogels for Accelerated Skin Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 4581-4590.	2.6	11
135	Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Advanced Drug Delivery Reviews, 2022, 188, 114419.	6.6	11
136	Comparison and optimization of poly(3-hydroxybutyrate) recovery fromAlcaligenes eutrophus and recombinantEscherichia coli. Korean Journal of Chemical Engineering, 1998, 15, 51-55.	1.2	10
137	Non-Invasive Topical Drug-Delivery System Using Hyaluronate Nanogels Crosslinked via Click Chemistry. Materials, 2021, 14, 1504.	1.3	10
138	Hyaluronic acid–siRNA conjugates complexed with cationic solid lipid nanoparticles for target specific gene silencing. RSC Advances, 2014, 4, 19338-19344.	1.7	9
139	Characterization of PEGylated Anti-VEGF aptamers using surface plasmon resonance. Macromolecular Research, 2008, 16, 182-184.	1.0	8
140	Hyaluronate – parathyroid hormone peptide conjugate for transdermal treatment of osteoporosis. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 793-804.	1.9	8
141	Biocompatible Magnesium Implant Double-Coated with Dexamethasone-Loaded Black Phosphorus and Poly(lactide- <i>co</i> -glycolide). ACS Applied Bio Materials, 2020, 3, 8879-8889.	2.3	8
142	Two-photon microscopy of a Flt1 peptide–hyaluronate conjugate. Nanomedicine, 2015, 10, 2315-2324.	1.7	7
143	Bioimaging of botulinum toxin and hyaluronate hydrogels using zwitterionic near-infrared fluorophores. Biomaterials Research, 2017, 21, 15.	3.2	7
144	Hyaluronate/black phosphorus complexes as a copper chelating agent for Wilson disease treatment. Biomaterials Research, 2021, 25, 20.	3.2	7

#	Article	IF	CITATIONS
145	Smart contact lens containing hyaluronate–rose bengal conjugate for biophotonic myopia vision correction. Biomaterials Science, 2022, 10, 4997-5005.	2.6	7
146	Anti-coagulating hydroxyethyl starch blended with hyaluronic acid as a novel post-surgical adhesion barrier. Macromolecular Research, 2010, 18, 1076-1080.	1.0	6
147	Hyaluronate–Flt1 peptide conjugate/epirubicin micelles for theranostic application to liver cancers. RSC Advances, 2015, 5, 48615-48618.	1.7	6
148	Hyaluronate–Death Receptor 5 Antibody Conjugates for Targeted Treatment of Liver Metastasis. Biomacromolecules, 2016, 17, 3085-3093.	2.6	6
149	Supramolecular hydrogels encapsulating bioengineered mesenchymal stem cells for ischemic therapy. RSC Advances, 2018, 8, 18771-18775.	1.7	6
150	Radiative and Non-Radiative Decay Pathways in Carbon Nanodots toward Bioimaging and Photodynamic Therapy. Nanomaterials, 2022, 12, 70.	1.9	6
151	Development of the flow behavior model for 3D scaffold fabrication in the polymer deposition process by a heating method. Journal of Micromechanics and Microengineering, 2009, 19, 105003.	1.5	5
152	Cancer Detection: Microneedle Biosensor for Realâ€Time Electrical Detection of Nitric Oxide for In Situ Cancer Diagnosis During Endomicroscopy (Adv. Healthcare Mater. 8/2015). Advanced Healthcare Materials, 2015, 4, 1152-1152.	3.9	5
153	Hyaluronate–Peanut Agglutinin Conjugates for Target-Specific Bioimaging of Colon Cancer. Bioconjugate Chemistry, 2017, 28, 1434-1442.	1.8	5
154	Electroceutical Residue-Free Graphene Device for Dopamine Monitoring and Neural Stimulation. ACS Biomaterials Science and Engineering, 2019, 5, 2013-2020.	2.6	5
155	Three-Dimensional Tungsten Disulfide Raman Biosensor for Dopamine Detection. ACS Applied Bio Materials, 2020, 3, 7687-7695.	2.3	5
156	Fluorescent nanodiamond – hyaluronate conjugates for target-specific molecular imaging. RSC Advances, 2021, 11, 23073-23081.	1.7	5
157	Spectromicroscopic observation of a live single cell in a biocompatible liquid-enclosing graphene system. Nanoscale, 2018, 10, 150-157.	2.8	4
158	Multispectral upconversion nanoparticles for near infrared encoding of wearable devices. RSC Advances, 2021, 11, 21897-21903.	1.7	4
159	Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Longâ€∓erm Robust Continuous Glucose Monitoring of Smart Contact Lens (Adv. Mater. 18/2022). Advanced Materials, 2022, 34, .	11.1	4
160	Hyaluronate modified upconversion nanoparticles for near infrared light-triggered on–off tattoo systems. RSC Advances, 2017, 7, 14805-14808.	1.7	3
161	A Novel Branch-Type PEGylation of Aptamer Therapeutics. Key Engineering Materials, 2007, 342-343, 529-532.	0.4	2
162	Temperature-dependent location of a weakly segregated block copolymer in binary blends of block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 470-476.	2.4	2

#	Article	IF	Citations
163	Controlled growth of fluorescent silica nanoparticles using two-phase orthogonal solvents for bioimaging. Journal of Luminescence, 2019, 214, 116529.	1.5	2
164	Cell Adhesion: Bioorthogonal Click Chemistry-Based Synthetic Cell Glue(Small 48/2015). Small, 2015, 11, 6457-6457.	5. 2	1
165	Bioimaging: In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles (Adv. Funct. Mater. 22/2018). Advanced Functional Materials, 2018, 28, 1870153.	7.8	1
166	Cancer Theranosis: Multimodal Cancer Theranosis Using Hyaluronate-Conjugated Molybdenum Disulfide (Adv. Healthcare Mater. 1/2019). Advanced Healthcare Materials, 2019, 8, 1970002.	3.9	1
167	Production of poly(3â€hydroxybutyrate) by high cell density fedâ€batch culture of Alcaligenes eutrophus with phospate limitation. Biotechnology and Bioengineering, 1997, 55, 28-32.	1.7	1
168	Artificial Bone Substitute of MGSB and Hyaluronate Hydrogels. Bioceramics Development and Applications, 2011, 1, 1-4.	0.3	1
169	A Novel Degradation Controlled Hyaluronic Acid Derivatives. Key Engineering Materials, 2007, 342-343, 525-528.	0.4	0
170	Real-time bioimaging of hyaluronic acid derivatives using quantum dots for biopharmaceutical delivery applications. , 2010, , .		0
171	Stem Cells: Supramolecular Hydrogels for Longâ€Term Bioengineered Stem Cell Therapy (Adv.) Tj ETQq1 1 0.784	431 <u>4</u> rgBT	 /Oyerlock 1.0
172	Vaccines: Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant (Adv. Funct. Mater. 15/2016). Advanced Functional Materials, 2016, 26, 2511-2511.	7.8	0
173	Smart photonic materials for theranostic applications. , 2017, , .		O
174	Carbon Nanodots: Dualâ€Colorâ€Emitting Carbon Nanodots for Multicolor Bioimaging and Optogenetic Control of Ion Channels (Adv. Sci. 11/2017). Advanced Science, 2017, 4, .	5.6	0
175	Advanced materials and devices for medical applications. APL Materials, 2021, 9, .	2.2	0
176	In vivo photoacoustic monitoring of anti-obesity photothermal lipolysis. , 2018, , .		0