Cecilia Lanny Winata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089261/publications.pdf

Version: 2024-02-01

840776 610901 24 909 11 24 citations g-index h-index papers 30 30 30 1710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Research, 2011, 21, 1328-1338.	5.5	247
2	Prepatterning of Developmental Gene Expression by Modified Histones before Zygotic Genome Activation. Developmental Cell, 2011, 21, 993-1004.	7.0	188
3	Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. International Journal of Developmental Biology, 2010, 54, 803-813.	0.6	85
4	The translational regulation of maternal <scp>mRNA</scp> s in time and space. FEBS Letters, 2018, 592, 3007-3023.	2.8	51
5	Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal to zygotic transition. Development (Cambridge), 2017, 145, .	2.5	46
6	Normalization of RNA-Sequencing Data from Samples with Varying mRNA Levels. PLoS ONE, 2014, 9, e89158.	2.5	44
7	Impaired Development Of Neural-Crest Cell Derived Organs and Intellectual Disability Caused By <i>MED13L</i> Haploinsufficiency. Human Mutation, 2014, 35, n/a-n/a.	2.5	43
8	Genome Wide Analysis Reveals Zic3 Interaction with Distal Regulatory Elements of Stage Specific Developmental Genes in Zebrafish. PLoS Genetics, 2013, 9, e1003852.	3.5	35
9	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.	21.4	26
10	The canonical way to make a heart: \hat{l}^2 -catenin and plakoglobin in heart development and remodeling. Experimental Biology and Medicine, 2017, 242, 1735-1745.	2.4	23
11	Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Research, 2019, 29, 506-519.	5.5	21
12	DANIO-CODE: Toward an Encyclopedia of DNA Elements in Zebrafish. Zebrafish, 2016, 13, 54-60.	1.1	15
13	Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker. BMC Genomics, 2021, 22, 715.	2.8	14
14	Decoding the Heart through Next Generation Sequencing Approaches. Genes, 2018, 9, 289.	2.4	12
15	Cardiac-specific \hat{l}^2 -catenin deletion dysregulates energetic metabolism and mitochondrial function in perinatal cardiomyocytes. Mitochondrion, 2021, 60, 59-69.	3.4	10
16	Changing Faces of Transcriptional Regulation Reflected by Zic3. Current Genomics, 2015, 16, 117-127.	1.6	9
17	The zebrafish as a model for developmental and biomedical research in Poland and beyond. Developmental Biology, 2020, 457, 167-168.	2.0	6
18	Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cellular and Molecular Life Sciences, 2021, 78, 6669-6687.	5.4	6

#	Article	IF	CITATIONS
19	Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift. BMC Genomics, 2021, 22, 904.	2.8	6
20	Zebrafish Zic Genes Mediate Developmental Signaling. Advances in Experimental Medicine and Biology, 2018, 1046, 157-177.	1.6	5
21	Fish-Ing for Enhancers in the Heart. International Journal of Molecular Sciences, 2021, 22, 3914.	4.1	5
22	A novel conserved enhancer at zebrafish <i>zic3</i> and <i>zic6</i> loci drives neural expression. Developmental Dynamics, 2019, 248, 837-849.	1.8	4
23	Exploring Translational Control of Maternal in Zebrafish. Methods in Molecular Biology, 2021, 2218, 367-380.	0.9	2
24	The Zebrafish as a New Model System for Experimental Biology. Cytology and Genetics, 2018, 52, 406-415.	0.5	1