Hooyar Attar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6089067/publications.pdf Version: 2024-02-01

		159358	433756
31	4,922	30	31
papers	citations	h-index	g-index
32	32	32	3738
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 170-177.	2.6	566
2	Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review. Advanced Engineering Materials, 2016, 18, 463-475.	1.6	564
3	Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties. Acta Materialia, 2014, 76, 13-22.	3.8	483
4	Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review. International Journal of Machine Tools and Manufacture, 2018, 133, 85-102.	6.2	273
5	Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 350-356.	2.6	235
6	Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 20-26.	2.6	225
7	Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Materials Letters, 2015, 142, 38-41.	1.3	222
8	Additive manufacturing of Cu–10Sn bronze. Materials Letters, 2015, 156, 202-204.	1.3	208
9	Effect of Powder Particle Shape on the Properties of In Situ Ti–TiB Composite Materials Produced by Selective Laser Melting. Journal of Materials Science and Technology, 2015, 31, 1001-1005.	5.6	201
10	Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 385-393.	2.6	176
11	Evaluation of mechanical and wear properties of Ti xNb 7Fe alloys designed for biomedical applications. Materials and Design, 2016, 111, 592-599.	3.3	166
12	Corrosion Behaviour of Selective Laser Melted Ti-TiB Biocomposite in Simulated Body Fluid. Electrochimica Acta, 2017, 232, 89-97.	2.6	166
13	Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 169-174.	1.5	128
14	Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development. Journal of Alloys and Compounds, 2020, 827, 154263.	2.8	124
15	Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Additive Manufacturing, 2015, 6, 1-5.	1.7	120
16	Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. Journal of Materials Research, 2014, 29, 1941-1950.	1.2	116
17	Processing of Al–12Si–TNM composites by selective laser melting and evaluation of compressive and wear properties. Journal of Materials Research, 2016, 31, 55-65.	1.2	103
18	Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 195-202.	2.6	101

HOOYAR ATTAR

#	Article	IF	CITATIONS
19	Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 866-871.	1.5	100
20	Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Materials Technology, 2016, 31, 66-76.	1.5	97
21	Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 149-158.	1.5	93
22	Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 339-345.	2.6	90
23	High strength beta titanium alloys: New design approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 297-302.	2.6	65
24	Microstructure, phase composition and mechanical properties of new, low cost Ti-Mn-Nb alloys for biomedical applications. Journal of Alloys and Compounds, 2019, 787, 570-577.	2.8	59
25	Microstructural evolution and mechanical properties of bulk and porous low-cost Ti–Mo–Fe alloys produced by powder metallurgy. Journal of Alloys and Compounds, 2021, 853, 156768.	2.8	44
26	Finite element analysis of porous commercially pure titanium for biomedical implant application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 43-50.	2.6	41
27	Metallurgical features of direct laser-deposited Ti6Al4V with trace boron. Journal of Manufacturing Processes, 2018, 35, 651-656.	2.8	40
28	Influence of surface crystallinity on the surface roughness of different ceramic glazes. Materials Characterization, 2016, 118, 570-574.	1.9	38
29	Surface and morphological modification of selectively laser melted titanium lattices using a chemical post treatment. Surface and Coatings Technology, 2020, 393, 125794.	2.2	36
30	Phase formation, microstructure and deformation behavior of heavily alloyed TiNb- and TiV-based titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 80-86.	2.6	32
31	Insights into Machining of a β Titanium Biomedical Alloy from Chip Microstructures. Metals, 2018, 8, 710.	1.0	10