
Arnoud Boot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6088869/publications.pdf Version: 2024-02-01

ADNOLLD ROOT

#	Article	IF	CITATIONS
1	The repertoire of mutational signatures in human cancer. Nature, 2020, 578, 94-101.	27.8	2,104
2	Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discovery, 2017, 7, 1116-1135.	9.4	637
3	Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Science Translational Medicine, 2017, 9, .	12.4	272
4	Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. The Lancet Gastroenterology and Hepatology, 2016, 1, 207-216.	8.1	227
5	Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell, 2019, 35, 932-947.e8.	16.8	182
6	In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Research, 2018, 28, 654-665.	5.5	126
7	Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Research, 2017, 27, 1475-1486.	5.5	90
8	Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. Journal of Applied Physiology, 2010, 108, 567-574.	2.5	65
9	Sex differences in oncogenic mutational processes. Nature Communications, 2020, 11, 4330.	12.8	60
10	Multiomic analysis and immunoprofiling reveal distinct subtypes of human angiosarcoma. Journal of Clinical Investigation, 2020, 130, 5833-5846.	8.2	58
11	Characterization of colibactin-associated mutational signature in an Asian oral squamous cell carcinoma and in other mucosal tumor types. Genome Research, 2020, 30, 803-813.	5.5	32
12	Tumor LINE-1 Methylation Level in Association with Survival of Patients with Stage II Colon Cancer. International Journal of Molecular Sciences, 2017, 18, 36.	4.1	29
13	BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer. Clinical Epigenetics, 2013, 5, 2.	4.1	27
14	Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells. Journal of Pathology, 2016, 240, 72-83.	4.5	27
15	The mutational landscape of early―and typicalâ€onset oral tongue squamous cell carcinoma. Cancer, 2021, 127, 544-553.	4.1	27
16	HLA-G protein expression in colorectal cancer evaluated by immunohistochemistry and western blot analysis: Its expression characteristics remain enigmatic. Clinical Immunology, 2018, 194, 80-86.	3.2	26
17	Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer. Scientific Reports, 2015, 5, 16286.	3.3	24
18	A tumor-associated splice-isoform of <i>MAP2K7</i> drives dedifferentiation in MBNL1-low cancers via JNK activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16391-16400.	7.1	23

Arnoud Boot

#	Article	IF	CITATIONS
19	Recurrent mutations in topoisomerase $Il\hat{l}\pm$ cause a previously undescribed mutator phenotype in human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
20	Monoallelic NTHL1 Loss-of-Function Variants and Risk of Polyposis and Colorectal Cancer. Gastroenterology, 2020, 159, 2241-2243.e6.	1.3	20
21	ROS-induced near-homozygous genomes in thyroid cancer. Endocrine-Related Cancer, 2018, 25, 83-97.	3.1	18
22	Synergistic effects of the sesquiterpene lactone, EPD, with cisplatin and paclitaxel in ovarian cancer cells. Journal of Experimental and Clinical Cancer Research, 2015, 34, 38.	8.6	17
23	Recurrent APC Splice Variant c.835-8A>G in Patients With Unexplained Colorectal Polyposis Fulfilling the Colibactin Mutational Signature. Gastroenterology, 2020, 159, 1612-1614.e5.	1.3	17
24	The Homeobox Gene MEIS1 Is Methylated in BRAFp.V600E Mutated Colon Tumors. PLoS ONE, 2013, 8, e79898.	2.5	11
25	Characterization of novel low passage primary and metastatic colorectal cancer cell lines. Oncotarget, 2016, 7, 14499-14509.	1.8	11
26	Evidence for genetic association between chromosome 1q loci and predisposition to colorectal neoplasia. British Journal of Cancer, 2017, 117, 1215-1223.	6.4	10
27	Methylation associated transcriptional repression of ELOVL5 in novel colorectal cancer cell lines. PLoS ONE, 2017, 12, e0184900.	2.5	10
28	Highly recurrent CBS epimutations in gastric cancer CpG island methylator phenotypes and inflammation. Genome Biology, 2021, 22, 167.	8.8	10
29	Promoter methylation and mRNA expression of HLA-G in relation to HLA-G protein expression in colorectal cancer. Human Immunology, 2016, 77, 764-772.	2.4	9
30	Toward clinical understanding of aristolochic acid upper-tract urothelial carcinoma. Theranostics, 2020, 10, 5578-5580.	10.0	9
31	Accuracy of mutational signature software on correlated signatures. Scientific Reports, 2022, 12, 390.	3.3	6
32	Whole exome sequencing identifies clinically relevant mutational signatures in resected hepatocellular carcinoma. Liver Cancer International, 2020, 1, 25-35.	1.3	5
33	Mutational analysis of driver genes defines the colorectal adenoma: in situ carcinoma transition. Scientific Reports, 2022, 12, 2570.	3.3	5
34	Allelic Switching of DLX5, GRB10, and SVOPL during Colorectal Cancer Tumorigenesis. International Journal of Genomics, 2019, 2019, 1-10.	1.6	4
35	Multiple neoplasia in a patient with Gitelman syndrome harboring germline monoallelic MUTYH mutation. Npj Genomic Medicine, 2020, 5, 39.	3.8	3
36	Chemosensitivity of BRCA1-Mutated Ovarian Cancer Cells and Established Cytotoxic Agents. International Journal of Gynecological Cancer, 2017, 27, 1571-1578.	2.5	2

#	Article	IF	CITATIONS
37	Mutational processes in cancer preferentially affect binding of particular transcription factors. Scientific Reports, 2021, 11, 3339.	3.3	2