Boå¼ena BÄdzyå"ska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6088624/publications.pdf

Version: 2024-02-01

933264 940416 19 256 10 16 citations g-index h-index papers 19 19 19 276 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Further evidence against the role renal medullary perfusion in short-term control of arterial pressure in normotensive and mildly or overtly hypertensive rats. Pflugers Archiv European Journal of Physiology, 2021, 473, 623-631.	1.3	3
2	Chymase Dependent Pathway of Angiotensin II Generation and Rapeseed Derived Peptides for Antihypertensive Treatment of Spontaneously Hypertensive Rats. Frontiers in Pharmacology, 2021, 12, 658805.	1.6	6
3	Reinvestigation of the tonic natriuretic action of intrarenal dopamine: comparison of two variants of saltâ∈dependent hypertension and spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 1280-1287.	0.9	2
4	Effects of systemic and renal intramedullary endothelin-1 receptor blockade on tissue NO and intrarenal hemodynamics in normotensive and hypertensive rats. European Journal of Pharmacology, 2021, 910, 174445.	1.7	2
5	Kynurenic acid selectively reduces heart rate in spontaneously hypertensive rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 673-679.	1.4	15
6	Altered renal medullary blood flow: A key factor or a parallel event in control of sodium excretion and blood pressure?. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1323-1332.	0.9	8
7	Evidence against a crucial role of renal medullary perfusion in blood pressure control of hypertensive rats. Journal of Physiology, 2019, 597, 211-223.	1.3	7
8	Different blood pressure responses to opioids in 3 rat hypertension models: role of the baseline status of sympathetic and renin–angiotensin systems. Canadian Journal of Physiology and Pharmacology, 2016, 94, 1159-1169.	0.7	8
9	An antihypertensive opioid: Biphalin, a synthetic non-addictive enkephalin analog decreases blood pressure in spontaneously hypertensive rats. Pharmacological Reports, 2016, 68, 51-55.	1.5	13
10	Effects of systemic administration of kynurenic acid and glycine on renal haemodynamics and excretion in normotensive and spontaneously hypertensive rats. European Journal of Pharmacology, 2014, 743, 37-41.	1.7	23
11	Vascular effects of a tripeptide fragment of novokinine in hypertensive rats: Mechanism of the hypotensive action. Pharmacological Reports, 2014, 66, 856-861.	1.5	6
12	Moderate Intrarenal Vasoconstriction after High Pressor Doses of Norepinephrine in the Rat: Comparison with Effects of Angiotensin II. Kidney and Blood Pressure Research, 2011, 34, 307-310.	0.9	6
13	Differential action of bradykinin on intrarenal regional perfusion in the rat: waning effect in the cortex and major impact in the medulla. Journal of Physiology, 2009, 587, 3943-3953.	1.3	11
14	Opposed effects of prostaglandin E ₂ on perfusion of rat renal cortex and medulla: interactions with the renin–angiotensin system. Experimental Physiology, 2008, 93, 1292-1302.	0.9	16
15	Prostaglandins but not nitric oxide protect renal medullary perfusion in anaesthetised rats receiving angiotensin II. Journal of Physiology, 2003, 548, 875-880.	1.3	29
16	Differential effect of angiotensin II on blood circulation in the renal medulla and cortex of anaesthetised rats. Journal of Physiology, 2002, 538, 159-166.	1.3	49
17	Renal Vascular Effects of Frusemide in the Rat: Influence of Salt Loading and the Role of Angiotensin II. Experimental Physiology, 2001, 86, 611-616.	0.9	14
18	Differential Effect of Frusemide on Renal Medullary and Cortical Blood Flow in the Anaesthetised Rat. Experimental Physiology, 2000, 85, 783-789.	0.9	17

#	Article	IF	CITATIONS
19	Osmotic hypertonicity of the renal medulla during changes in renal perfusion pressure in the rat. Journal of Physiology, 1998, 508, 929-935.	1.3	21