Jing Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6088342/publications.pdf

Version: 2024-02-01

10	100	933447	1125743
19	188	10	13
papers	citations	h-index	g-index
19	19	19	199
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Alternative splicing of CsJAZ1 negatively regulates flavanâ€3â€ol biosynthesis in tea plants. Plant Journal, 2022, 110, 243-261.	5.7	17
2	Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus. Parasites and Vectors, 2022, 15, 159.	2.5	6
3	Effects of red lentil protein addition on textural quality and starch digestibility of brown rice noodles. International Journal of Food Science and Technology, 2021, 56, 6656-6666.	2.7	13
4	A transcription factor DAF-5 functions in Haemonchus contortus development. Parasites and Vectors, 2021, 14, 529.	2.5	3
5	A daf-7-related TGF-Î ² ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus. Parasites and Vectors, 2020, 13, 326.	2.5	8
6	<scp><i>OsSQD1</i></scp> at the crossroads of phosphate and sulfur metabolism affects plant morphology and lipid composition in response to phosphate deprivation. Plant, Cell and Environment, 2020, 43, 1669-1690.	5.7	16
7	Effects of <i>Lactobacillus plantarum</i> Inoculum on the Fermentation Rate and Rice Noodle Quality. Journal of Oleo Science, 2020, 69, 1031-1041.	1.4	4
8	The Speciation of Cd in Cdâ€"Fe Coprecipitates: Does Cd Substitute for Fe in Goethite Structure?. ACS Earth and Space Chemistry, 2019, 3, 2225-2236.	2.7	20
9	Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis). Horticulture Research, 2019, 6, 126.	6.3	17
10	A DAF-3 co-Smad molecule functions in Haemonchus contortus development. Parasites and Vectors, 2019, 12, 609.	2.5	11
11	Occurrence of Telenomus dignus (Gahan) on the Sugarcane Borers, Scirpophaga intacta Snellen and Chilo sacchariphagus Bojer in Guangxi Province, China. Sugar Tech, 2018, 20, 725-729.	1.8	5
12	OsPHR3 affects the traits governing nitrogen homeostasis in rice. BMC Plant Biology, 2018, 18, 241.	3.6	15
13	Antidiabetic Effect of Highâ€Chromium Yeast Against Type 2 Diabetic KKâ€Ay Mice. Journal of Food Science, 2018, 83, 1956-1963.	3.1	7
14	Characterization of the loss-of-function mutant NH101 for yield under phosphate deficiency from EMS-induced mutants of rice variety Nagina22. Plant Physiology and Biochemistry, 2018, 130, 1-13.	5.8	12
15	Establishing a Forecast Mathematical Model of Sugarcane Yield and Brix Reduction Based on the Extent of Pokkah Boeng Disease. Sugar Tech, 2017, 19, 656-661.	1.8	3
16	Rat and poultry feeding studies with soybean meal produced from imidazolinone-tolerant (CV127) soybeans. Food and Chemical Toxicology, 2016, 88, 48-56.	3.6	6
17	Response to Comment on Purification and Characterization of Chromium-Binding Substance from High-Chromium Yeast. Journal of Agricultural and Food Chemistry, 2013, 61, 9282-9284.	5. 2	1
18	Purification and Characterization of Chromium-Binding Substances from High-Chromium Yeast. Journal of Agricultural and Food Chemistry, 2013, 61, 1279-1287.	5.2	10

#	Article	IF	CITATIONS
19	Oral Administration of the High-Chromium Yeast Improve Blood Plasma Variables and Pancreatic Islet Tissue in Diabetic Mice. Biological Trace Element Research, 2010, 138, 250-264.	3.5	14