
Russell H Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/608760/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The grand challenges of <i>Science Robotics</i> . Science Robotics, 2018, 3, .	9.9	787
2	Combating COVID-19—The role of robotics in managing public health and infectious diseases. Science Robotics, 2020, 5, .	9.9	393
3	Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, 2017, 2, .	9.9	349
4	An open-source research kit for the da Vinci \hat{A}^{\circledast} Surgical System. , 2014, , .		309
5	Surgical data science for next-generation interventions. Nature Biomedical Engineering, 2017, 1, 691-696.	11.6	283
6	Medical Robotics and Computer-Integrated Surgery. Springer Handbooks, 2016, , 1657-1684.	0.3	198
7	A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. International Journal of Computer Assisted Radiology and Surgery, 2009, 4, 383-390.	1.7	158
8	Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis. , 2011, , .		112
9	Intraoperative Image-based Multiview 2D/3D Registration for Image-Guided Orthopaedic Surgery: Incorporation of Fiducial-Based C-Arm Tracking and GPU-Acceleration. IEEE Transactions on Medical Imaging, 2012, 31, 948-962.	5.4	110
10	Surgical data science – from concepts toward clinical translation. Medical Image Analysis, 2022, 76, 102306.	7.0	107
11	Spatial Motion Constraints Using Virtual Fixtures Generated by Anatomy. , 2007, 23, 4-19.		105
12	Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery. Medical Image Analysis, 2005, 9, 413-426.	7.0	95
13	Dense Depth Estimation in Monocular Endoscopy With Self-Supervised Learning Methods. IEEE Transactions on Medical Imaging, 2020, 39, 1438-1447.	5.4	87
14	System for Robotically Assisted Percutaneous Procedures with Computed Tomography Guidance. Computer Aided Surgery, 2001, 6, 370-383.	1.8	78
15	Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors. IEEE Sensors Journal, 2015, 15, 5494-5503.	2.4	66
16	A multi-function force sensing instrument for variable admittance robot control in retinal microsurgery. , 2014, 2014, 1411-1418.		63
17	Cooperative Robot Assistant for Retinal Microsurgery. Lecture Notes in Computer Science, 2008, 11, 543-550.	1.0	59
18	Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for Computing Optimal Shape Alignment. PLoS ONE, 2015, 10, e0117688.	1.1	59

#	Article	IF	CITATIONS
19	A Curved-Drilling Approach in Core Decompression of the Femoral Head Osteonecrosis Using a Continuum Manipulator. IEEE Robotics and Automation Letters, 2017, 2, 1480-1487.	3.3	56
20	Vision-Based Calibration of Dual RCM-Based Robot Arms in Human-Robot Collaborative Minimally Invasive Surgery. IEEE Robotics and Automation Letters, 2018, 3, 672-679.	3.3	56
21	Accelerating Surgical Robotics Research: A Review of 10 Years With the da Vinci Research Kit. IEEE Robotics and Automation Magazine, 2021, 28, 56-78.	2.2	56
22	System for robotically assisted percutaneous procedures with computed tomography guidance. Computer Aided Surgery, 2001, 6, 370-83.	1.8	54
23	A System for Video-Based Navigation for Endoscopic Endonasal Skull Base Surgery. IEEE Transactions on Medical Imaging, 2012, 31, 963-976.	5.4	53
24	3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery. IEEE Sensors Journal, 2017, 17, 3526-3541.	2.4	53
25	Evaluation and Stability Analysis of Video-Based Navigation System for Functional Endoscopic Sinus Surgery on <italic>In Vivo</italic> Clinical Data. IEEE Transactions on Medical Imaging, 2018, 37, 2185-2195.	5.4	49
26	Medical Robots for Infectious Diseases: Lessons and Challenges from the COVID-19 Pandemic. IEEE Robotics and Automation Magazine, 2021, 28, 18-27.	2.2	47
27	Visual tracking using the sum of conditional variance. , 2011, , .		46
28	Machine Learning Methods Uncover Radiomorphologic Dose Patterns in Salivary Glands that Predict Xerostomia in Patients with Head and Neck Cancer. Advances in Radiation Oncology, 2019, 4, 401-412.	0.6	44
29	Evaluation of a System for High-Accuracy 3D Image-Based Registration of Endoscopic Video to C-Arm Cone-Beam CT for Image-Guided Skull Base Surgery. IEEE Transactions on Medical Imaging, 2013, 32, 1215-1226.	5.4	41
30	Cadaveric Feasibility Study of da Vinci Si–Assisted Cochlear Implant With Augmented Visual Navigation for Otologic Surgery. JAMA Otolaryngology - Head and Neck Surgery, 2014, 140, 208.	1.2	41
31	Force-assisted ultrasound imaging system through dual force sensing and admittance robot control. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 983-991.	1.7	41
32	A C-Arm Fluoroscopy-Guided Progressive Cut Refinement Strategy Using a Surgical Robot. Computer Aided Surgery, 2000, 5, 373-390.	1.8	40
33	Dual-robot ultrasound-guided needle placement: closing the planning-imaging-action loop. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1173-1181.	1.7	39
34	Deformable 2D-3D Registration of the Pelvis with a Limited Field of View, Using Shape Statistics. , 2007, 10, 519-526.		38
35	IRIS: Integrated Robotic Intraocular Snake. , 2015, 2015, 1764-1769.		38
36	Augmented reality and cone beam CT guidance for transoral robotic surgery. Journal of Robotic Surgery, 2015, 9, 223-233.	1.0	37

#	Article	IF	CITATIONS
37	Enabling machine learning in X-ray-based procedures via realistic simulation of image formation. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1517-1528.	1.7	37
38	Vision-Based Proximity Detection in Retinal Surgery. IEEE Transactions on Biomedical Engineering, 2012, 59, 2291-2301.	2.5	36
39	A Surgical Robotic System for Treatment of Pelvic Osteolysis Using an FBG-Equipped Continuum Manipulator and Flexible Instruments. IEEE/ASME Transactions on Mechatronics, 2021, 26, 369-380.	3.7	36
40	Development and Experimental Evaluation of Concurrent Control of a Robotic Arm and Continuum Manipulator for Osteolytic Lesion Treatment. IEEE Robotics and Automation Letters, 2017, 2, 1625-1631.	3.3	35
41	Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor. IEEE Sensors Journal, 2021, 21, 3066-3076.	2.4	35
42	On the reproducibility of expert-operated and robotic ultrasound acquisitions. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 1003-1011.	1.7	34
43	Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 759-769.	1.7	33
44	Evaluation of a computerized measurement technique for joint alignment before and during periacetabular osteotomy. Computer Aided Surgery, 2007, 12, 215-224.	1.8	32
45	Software Architecture of the Da Vinci Research Kit. , 2017, , .		32
46	Augmented realityâ€based feedback for technicianâ€inâ€theâ€loop Câ€arm repositioning. Healthcare Technology Letters, 2018, 5, 143-147.	[/] 1.9	32
47	Plan in 2-D, execute in 3-D: an augmented reality solution for cup placement in total hip arthroplasty. Journal of Medical Imaging, 2018, 5, 1.	0.8	32
48	Towards Robot-Assisted Retinal Vein Cannulation: A Motorized Force-Sensing Microneedle Integrated with a Handheld Micromanipulator â€. Sensors, 2017, 17, 2195.	2.1	31
49	Development of a biomechanical guidance system for periacetabular osteotomy. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 497-508.	1.7	30
50	The Impact of Machine Learning on 2D/3D Registration for Image-Guided Interventions: A Systematic Review and Perspective. Frontiers in Robotics and AI, 2021, 8, 716007.	2.0	27
51	Virtual fixture assistance for needle passing and knot tying. , 2016, , .		26
52	Dose/Volume histogram patterns in Salivary Gland subvolumes influence xerostomia injury and recovery. Scientific Reports, 2019, 9, 3616.	1.6	26
53	SCADE: Simultaneous Sensor Calibration and Deformation Estimation of FBG-Equipped Unmodeled Continuum Manipulators. IEEE Transactions on Robotics, 2020, 36, 222-239.	7.3	26
54	Toward Semi-autonomous Cryoablation of Kidney Tumors via Model-Independent Deformable Tissue Manipulation Technique. Annals of Biomedical Engineering, 2018, 46, 1650-1662.	1.3	24

#	Article	IF	CITATIONS
55	Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy. Lecture Notes in Computer Science, 2018, , 128-138.	1.0	24
56	Large deflection shape sensing of a continuum manipulator for minimally-invasive surgery. , 2015, 2015, 2015, 201-206.		23
57	A highly sensitive fiber Bragg Grating shape sensor for continuum manipulators with large deflections. , 2017, , .		23
58	An Active Steering Hand-Held Robotic System for Minimally Invasive Orthopaedic Surgery Using a Continuum Manipulator. IEEE Robotics and Automation Letters, 2021, 6, 1622-1629.	3.3	23
59	A Unified Framework for the Teleoperation of Surgical Robots in Constrained Workspaces. , 2019, , .		22
60	A C-arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot. Computer Aided Surgery, 2000, 5, 373-390.	1.8	22
61	The robotic ENT microsurgery system: A novel robotic platform for microvascular surgery. Laryngoscope, 2017, 127, 2495-2500.	1.1	22
62	Concurrent nonparametric estimation of organ geometry and tissue stiffness using continuous adaptive palpation. , 2016, , .		21
63	Pose Estimation of Periacetabular Osteotomy Fragments With Intraoperative X-Ray Navigation. IEEE Transactions on Biomedical Engineering, 2020, 67, 441-452.	2.5	21
64	Toward intraoperative image-guided transoral robotic surgery. Journal of Robotic Surgery, 2013, 7, 217-225.	1.0	20
65	FBG-Based Control of a Continuum Manipulator Interacting with Obstacles. , 2018, , .		20
66	Concepts and Trends in Autonomy for Robot-Assisted Surgery. Proceedings of the IEEE, 2022, 110, 993-1011.	16.4	20
67	Image-based navigation for functional endoscopic sinus surgery using structure from motion. Proceedings of SPIE, 2016, 9784, .	0.8	19
68	A learning-based method for online adjustment of C-arm Cone-beam CT source trajectories for artifact avoidance. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1787-1796.	1.7	19
69	Fiducial-Free 2D/3D Registration for Robot-Assisted Femoroplasty. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 437-446.	2.1	19
70	A novel dual force sensing instrument with cooperative robotic assistant for vitreoretinal surgery. , 2013, 2013, 213-218.		18
71	Progress toward robotic surgery of the lateral skull base: Integration of a dexterous continuum manipulator and flexible ring curette. , 2016, , .		18
72	Pose-aware C-arm for automatic re-initialization of interventional 2D/3D image registration. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 1221-1230.	1.7	18

#	Article	IF	CITATIONS
73	Force-Controlled Exploration for Updating Virtual Fixture Geometry in Model-Mediated Telemanipulation. Journal of Mechanisms and Robotics, 2017, 9, .	1.5	18
74	Automated Registrationâ€Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery. Otolaryngology - Head and Neck Surgery, 2022, 167, 133-140.	1.1	18
75	A new ENT microsurgery robot: Error analysis and implementation. , 2013, , .		17
76	Spatial Radiation Dose Influence on Xerostomia Recovery and Its Comparison to Acute Incidence in Patients With Head and Neck Cancer. Advances in Radiation Oncology, 2020, 5, 221-230.	0.6	17
77	A Dexterous Robotic System for Autonomous Debridement of Osteolytic Bone Lesions in Confined Spaces: Human Cadaver Studies. IEEE Transactions on Robotics, 2022, 38, 1213-1229.	7.3	17
78	Telerobotic Control by Virtual Fixtures for Surgical Applications. , 2007, , 381-401.		17
79	Intraoperative image-guided transoral robotic surgery: pre-clinical studies. International Journal of Medical Robotics and Computer Assisted Surgery, 2015, 11, 256-267.	1.2	16
80	The deformable most-likely-point paradigm. Medical Image Analysis, 2019, 55, 148-164.	7.0	16
81	Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe. Journal of Biomedical Optics, 2014, 19, 1.	1.4	15
82	Medical robotics and computer-integrated interventional medicine. , 2020, , 617-672.		15
83	Hybrid Robot-Assisted Frameworks for Endomicroscopy Scanning in Retinal Surgeries. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 176-187.	2.1	15
84	The cisst libraries for computer assisted intervention systems. , 2008, , .		15
85	Predicting kinematic configuration from string length for a snake-like manipulator not exhibiting constant curvature bending. , 2014, , .		14
86	Motorized Microforceps With Active Motion Guidance Based on Common-Path SSOCT for Epiretinal Membranectomy. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2440-2448.	3.7	14
87	Preliminary Evaluation of an Online Estimation Method for Organ Geometry and Tissue Stiffness. IEEE Robotics and Automation Letters, 2018, 3, 1816-1823.	3.3	14
88	Fluoroscopic Navigation for a Surgical Robotic System Including a Continuum Manipulator. IEEE Transactions on Biomedical Engineering, 2022, 69, 453-464.	2.5	14
89	NON-RIGID REGISTRATION AND CORRESPONDENCE FINDING IN MEDICAL IMAGE ANALYSIS USING MULTIPLE-LAYER FLEXIBLE MESH TEMPLATE MATCHING. International Journal of Pattern Recognition and Artificial Intelligence, 2003, 17, 1145-1165.	0.7	13
90	Iterative Most Likely Oriented Point Registration. Lecture Notes in Computer Science, 2014, 17, 178-185.	1.0	13

#	Article	IF	CITATIONS
91	Robotic microlaryngeal phonosurgery: Testing of a "steadyâ€hand―microsurgery platform. Laryngoscope, 2018, 128, 126-132.	1.1	13
92	A constrained optimization approach to virtual fixtures for multi-robot collaborative teleoperation. , 2011, , .		12
93	A robotic assistant for trans-oral surgery: the robotic endo-laryngeal flexible (Robo-ELF) scope. Journal of Robotic Surgery, 2012, 6, 13-18.	1.0	12
94	Toward Improving Patient Safety and Surgeon Comfort in a Synergic Robot-Assisted Eye Surgery: A Comparative Study. , 2019, 2019, 7075-7082.		12
95	Design and Experimental Validation of a Miniaturized Robotic Tendon-Driven Articulated Surgical Drill for Enhancing Distal Dexterity in Minimally Invasive Spine Fusion. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1858-1866.	3.7	12
96	Fiducial-free 2D/3D registration of the proximal femur for robot-assisted femoroplasty. , 2020, , .		12
97	Safety Design View: A conceptual framework for systematic understanding of safety features of medical robot systems. , 2014, , .		11
98	Automatic segmentation and statistical shape modeling of the paranasal sinuses to estimate natural variations. Proceedings of SPIE, 2016, 9784, .	0.8	11
99	Radioâ€morphology: Parametric shapeâ€based features in radiotherapy. Medical Physics, 2019, 46, 704-713.	1.6	11
100	Adaptive Control Improves Sclera Force Safety in Robot-Assisted Eye Surgery: A Clinical Study. IEEE Transactions on Biomedical Engineering, 2021, 68, 3356-3365.	2.5	11
101	Reconstructing Sinus Anatomy from Endoscopic Video – Towards a Radiation-Free Approach for Quantitative Longitudinal Assessment. Lecture Notes in Computer Science, 2020, , 3-13.	1.0	11
102	Statistical atlas based extrapolation of CT data. Proceedings of SPIE, 2010, , .	0.8	10
103	An image-guided femoroplasty system: development and initial cadaver studies. Proceedings of SPIE, 2010, , .	0.8	10
104	A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots. , 2018, , .		10
105	On the effect of vibration on shape sensing of continuum manipulators using fiber Bragg gratings. , 2018, , .		10
106	Anatomical Mesh-Based Virtual Fixtures for Surgical Robots. , 2020, , .		10
107	Virtual reality for synergistic surgical training and data generation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2022, 10, 366-374.	1.3	10
108	Open Simulation Environment for Learning and Practice of Robot-Assisted Surgical Suturing. IEEE Robotics and Automation Letters, 2022, 7, 3843-3850.	3.3	10

#	Article	IF	CITATIONS
109	Surgical Robotics and Computer-Integrated Interventional Medicine [Scanning the Issue]. Proceedings of the IEEE, 2022, 110, 823-834.	16.4	10
110	SAGE: SLAM with Appearance and Geometry Prior for Endoscopy. , 2022, , .		10
111	Patch-Based Image Similarity for Intraoperative 2D/3D Pelvis Registration During Periacetabular Osteotomy. Lecture Notes in Computer Science, 2018, , 153-163.	1.0	9
112	Development and preliminary data of novel integrated optical micro-force sensing tools for retinal microsurgery. , 2009, , .		8
113	Collaborative Robotics Toolkit (CRTK): Open Software Framework for Surgical Robotics Research. , 2020, , .		8
114	ASSIST - Automated System for Surgical Instrument and Sponge Tracking. , 2008, , .		7
115	Deformable registration of the inflated and deflated lung for cone-beam CT-guided thoracic surgery. Proceedings of SPIE, 2012, 8316, .	0.8	7
116	Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System. PLoS ONE, 2014, 9, e115881.	1.1	7
117	Updating Virtual Fixtures From Exploration Data in Force-Controlled Model-Based Telemanipulation. , 2016, , .		7
118	Accuracy assessment and kinematic calibration of the robotic endoscopic microsurgical system. , 2016, 2016, 5091-5094.		7
119	Image-Based Trajectory Tracking Control of 4-DoF Laparoscopic Instruments Using a Rotation Distinguishing Marker. IEEE Robotics and Automation Letters, 2017, 2, 1586-1592.	3.3	7
120	Imageâ€Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot. Otolaryngology - Head and Neck Surgery, 2019, 161, 852-855.	1.1	7
121	Multi-Mosquito Object Detection and 2D Pose Estimation for Automation of PfSPZ Malaria Vaccine Production. , 2019, , .		7
122	A Mosquito Pick-and-Place System for PfSPZ-Based Malaria Vaccine Production. IEEE Transactions on Automation Science and Engineering, 2021, 18, 299-310.	3.4	7
123	A Task Space Virtual Fixture Architecture for Teleoperated Surgical System With Slave Joint Limit Constraints. IEEE/ASME Transactions on Mechatronics, 2022, 27, 69-80.	3.7	7
124	Non-Fixed Contact Manipulation Control Framework for Deformable Objects With Active Contact Adjustment. IEEE Robotics and Automation Letters, 2021, 6, 2878-2885.	3.3	7
125	Telerobotic Operation of Intensive Care Unit Ventilators. Frontiers in Robotics and AI, 2021, 8, 612964.	2.0	7
126	Photoacoustic-based catheter tracking: simulation, phantom, and in vivo studies. Journal of Medical Imaging, 2018, 5, 1.	0.8	7

#	Article	IF	CITATIONS
127	Integrating Artificial Intelligence and Augmented Reality in Robotic Surgery: An Initial dVRK Study Using a Surgical Education Scenario. , 2022, , .		7
128	Applied Force during Piston Prosthesis Placement in a 3D-Printed Model: Freehand vs Robot-Assisted Techniques. Otolaryngology - Head and Neck Surgery, 2019, 160, 320-325.	1.1	6
129	A Framework for Customizable Multi-User Teleoperated Control. IEEE Robotics and Automation Letters, 2021, 6, 3256-3263.	3.3	6
130	A Progressive Cut Refinement Scheme for Revision Total Hip Replacement Surgery Using C-arm Fluoroscopy. Lecture Notes in Computer Science, 1999, , 1010-1019.	1.0	6
131	Visual tracking using the sum of conditional variance. , 2011, , .		6
132	Learning to Detect Collisions for Continuum Manipulators Without a Prior Model. Lecture Notes in Computer Science, 2019, , 182-190.	1.0	6
133	Hybrid-Structure Hand-Held Robotic Endoscope for Sinus Surgery With Enhanced Distal Dexterity. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1863-1872.	3.7	6
134	Effects of tools inserted through snake-like surgical manipulators. , 2014, 2014, 6854-8.		5
135	Real-Time Intraoperative Surgical Guidance System in the da Vinci Surgical Robot Based on Transrectal Ultrasound/Photoacoustic Imaging With Photoacoustic Markers: An <i>Ex Vivo</i> Demonstration. IEEE Robotics and Automation Letters, 2023, 8, 1287-1294.	3.3	5
136	Medical Robotics and Computer-Integrated Surgery. , 0, , 1213-1227.		4
137	Ultrasound and ct registration quality: Elastography vs. classical B-Mode. , 2009, , .		4
138	Biomechanical Guidance System for Periacetabular Osteotomy. Advances in Experimental Medicine and Biology, 2018, 1093, 169-179.	0.8	4
139	Endoscopic navigation in the clinic: registration in the absence of preoperative imaging. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1495-1506.	1.7	4
140	Mosquito Pick-and-Place: Automating a Key Step in PfSPZ-based Malaria Vaccine Production. , 2019, , .		4
141	Mosquito Staging Apparatus for Producing PfSPZ Malaria Vaccines. , 2019, , .		4
142	Evaluation of a computerized measurement technique for joint alignment before and during periacetabular osteotomy. Computer Aided Surgery, 2007, 12, 215-224.	1.8	4
143	Modular Interoperability in Surgical Robotics Software. Mechanical Engineering, 2015, 137, S19-S22.	0.0	3
144	Safe tissue manipulation in retinal microsurgery via motorized instruments with force sensing. , 2017, 2017, .		3

9

#	Article	IF	CITATIONS
145	Realâ€time robotic airway measurement: An additional benefit of a novel steadyâ€hand robotic platform. Laryngoscope, 2019, 129, 324-329.	1.1	3
146	Evaluation of Hybrid Control and Palpation Assistance for Situational Awareness in Telemanipulated Task Execution. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 31-43.	2.1	3
147	Automated Extraction of Anatomical Measurements From Temporal Bone CT Imaging. Otolaryngology - Head and Neck Surgery, 2022, 167, 731-738.	1.1	3
148	Five-dimensional ultrasound system for soft tissue visualization. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1927-1939.	1.7	2
149	A Novel Semi-Autonomous Control Framework for Retina Confocal Endomicroscopy Scanning*. , 2019, 2019, 7083-7090.		2
150	Characterization of patient head motion in otologic surgery: Implications for TEES. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2021, 42, 102827.	0.6	2
151	Automated Mosquito Salivary Gland Extractor for PfSPZ-based Malaria Vaccine Production. , 2021, , .		2
152	Towards Safe In Situ Needle Manipulation for Robot Assisted Lumbar Injection in Interventional MRI. , 2021, 2021, 1835-1842.		2
153	Autonomous Spinal Robotic System for Transforaminal Lumbar Epidural Injections: A Proof of Concept of Study. Global Spine Journal, 2024, 14, 138-145.	1.2	2
154	Optimization of Multiple-Isocenter Treatment Planning for Linac-Based Stereotactic Radiosurgery. Computer Aided Surgery, 2000, 5, 220-233.	1.8	1
155	Proof of Concept of a Tracheoesophageal Voice Prosthesis Insufflator for Speech Production After Total Laryngectomy. Journal of Voice, 2017, 31, 514.e1-514.e4.	0.6	1
156	Characterization of patient head motion in otologic surgery: Implications for TEES. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2021, 42, 102875.	0.6	1
157	Progress in Development of an Automated Mosquito Salivary Gland Extractor: A Step Forward to Malaria Vaccine Mass Production. , 2021, , .		1
158	Force-Based Control for Safe Robot-Assisted Retinal Interventions: <i>In Vivo</i> Evaluation in Animal Studies. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 578-587.	2.1	1
159	Recovering Physiological Changes in Nasal Anatomy with Confidence Estimates. Lecture Notes in Computer Science, 2019, , 115-124.	1.0	0
160	Al reflections in 2021. Nature Machine Intelligence, 2022, 4, 5-10.	8.3	0
161	Guest Editorial Special Section on Surgical Vision, Navigation, and Robotics. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 2-4.	2.1	0
162	A constrained optimization approach to virtual fixtures for multi-robot collaborative teleoperation. , 2011, , .		0

10