
KateÅ**łff**a ValentovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6087319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination of plant phenolics and isoquinolinium alkaloids protects gingival fibroblast and improves post-extraction healing after lower third molar extraction. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2023, 167, 131-138.	0.2	1
2	Preparation of Synthetic and Natural Derivatives of Flavonoids Using Suzuki–Miyaura Cross-Coupling Reaction. Molecules, 2022, 27, 967.	1.7	6
3	Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomedicine and Pharmacotherapy, 2022, 149, 112806.	2.5	8
4	Silybin and its congeners: from traditional medicine to molecular effects. Natural Product Reports, 2022, 39, 1264-1281.	5.2	19
5	Interaction of Flavonoids with Zinc and Zinc-Containing Enzymes. Journal of Agricultural and Food Chemistry, 2022, 70, 6134-6144.	2.4	5
6	Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis. International Journal of Molecular Sciences, 2022, 23, 5743.	1.8	2
7	Flavonolignans from silymarin do not intercalate into <scp>DNA</scp> : Rebuttal of data published in the paper <i>J. Mol. Recognit</i> . e2812 (2019). Journal of Molecular Recognition, 2021, 34, e2888.	1.1	1
8	Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Medicinal Research Reviews, 2021, 41, 2195-2246.	5.0	28
9	Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo. Antioxidants, 2021, 10, 679.	2.2	1
10	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	6.6	84
11	Interaction of silymarin components and their sulfate metabolites with human serum albumin and cytochrome P450 (2C9, 2C19, 2D6, and 3A4) enzymes. Biomedicine and Pharmacotherapy, 2021, 138, 111459.	2.5	9
12	Continuous Diastereomeric Kinetic Resolution—Silybins A and B. Catalysts, 2021, 11, 1106.	1.6	4
13	Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds. Food Chemistry, 2021, 357, 129757.	4.2	12
14	Silymarin Dehydroflavonolignans Chelate Zinc and Partially Inhibit Alcohol Dehydrogenase. Nutrients, 2021, 13, 4238.	1.7	9
15	Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans. Journal of Agricultural and Food Chemistry, 2020, 68, 1763-1779.	2.4	46
16	Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 11197-11206.	2.4	12
17	Cytoprotective Activity of Natural and Synthetic Antioxidants. Antioxidants, 2020, 9, 713.	2.2	10
18	Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin. Metabolites, 2020, 10, 329.	1.3	10

#	Article	IF	CITATIONS
19	Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-Inflammatory Potential. Antioxidants, 2020, 9, 455.	2.2	31
20	Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota. Metabolites, 2020, 10, 29.	1.3	22
21	Simple and Rapid HPLC Separation and Quantification of Flavonoid, Flavonolignans, and 2,3-Dehydroflavonolignans in Silymarin. Foods, 2020, 9, 116.	1.9	26
22	Preparation of Retinoyl-Flavonolignan Hybrids and Their Antioxidant Properties. Antioxidants, 2019, 8, 236.	2.2	12
23	Protective Effects of Dietary Polyphenols on Arterial Stiffness. Proceedings (mdpi), 2019, 11, .	0.2	1
24	Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives. Antioxidants, 2019, 8, 303.	2.2	23
25	The Effect of Silymarin Flavonolignans and Their Sulfated Conjugates on Platelet Aggregation and Blood Vessels Ex Vivo. Nutrients, 2019, 11, 2286.	1.7	19
26	2,3-Dehydroderivatives of Silymarin Flavonolignans: Prospective Natural Compounds for the Prevention of Chronic Diseases. Proceedings (mdpi), 2019, 11, .	0.2	4
27	Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. Journal of Agricultural and Food Chemistry, 2019, 67, 7281-7288.	2.4	7
28	Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism. Nutrients, 2019, 11, 578.	1.7	43
29	The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. European Journal of Pharmaceutical Sciences, 2019, 134, 31-59.	1.9	224
30	Glycosidase atalyzed Synthesis of Glycosyl Esters and Phenolic Glycosides of Aromatic Acids. Advanced Synthesis and Catalysis, 2019, 361, 2627-2637.	2.1	14
31	Isolated Silymarin Flavonoids Increase Systemic and Hepatic Bilirubin Concentrations and Lower Lipoperoxidation in Mice. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	1.9	21
32	Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochemistry Letters, 2019, 30, 14-20.	0.6	15
33	Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 714-731.	5.9	160
34	Metabolism of flavonolignans in human hepatocytes. Journal of Pharmaceutical and Biomedical Analysis, 2018, 152, 94-101.	1.4	20
35	Interaction of isolated silymarin flavonolignans with iron and copper. Journal of Inorganic Biochemistry, 2018, 189, 115-123.	1.5	11
36	"Sweet Flavonoidsâ€: Glycosidase-Catalyzed Modifications. International Journal of Molecular Sciences, 2018, 19, 2126.	1.8	133

#	Article	IF	CITATIONS
37	Interlaboratory Coverage Test on Plant Food Bioactive Compounds and their Metabolites by Mass Spectrometry-Based Untargeted Metabolomics. Metabolites, 2018, 8, 46.	1.3	20
38	Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties. International Journal of Molecular Sciences, 2018, 19, 2349.	1.8	23
39	Isoquercetin enzymatic production: A true story. Molecular Catalysis, 2018, 458, 112-114.	1.0	3
40	Galloylation of polyphenols alters their biological activity. Food and Chemical Toxicology, 2017, 105, 223-240.	1.8	77
41	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	3.9	242
42	Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization. European Journal of Medicinal Chemistry, 2017, 127, 263-274.	2.6	25
43	Quercetin and its analogues: optical and acido–basic properties. Physical Chemistry Chemical Physics, 2017, 19, 26870-26879.	1.3	34
44	The silymarin composition \hat{e}_{i}^{\dagger} and why does it matter???. Food Research International, 2017, 100, 339-353.	2.9	107
45	Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues. International Journal of Molecular Sciences, 2017, 18, 1074.	1.8	15
46	The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions. Nutrients, 2017, 9, 1193.	1.7	19
47	Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. International Journal of Molecular Sciences, 2017, 18, 2231.	1.8	20
48	Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties. International Journal of Molecular Sciences, 2016, 17, 899.	1.8	16
49	(Anti)mutagenic and immunomodulatory properties of quercetin glycosides. Journal of the Science of Food and Agriculture, 2016, 96, 1492-1499.	1.7	27
50	Silychristin: Skeletal Alterations and Biological Activities. Journal of Natural Products, 2016, 79, 3086-3092.	1.5	38
51	Silibinin and its 2,3â€dehydroâ€derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Molecular Carcinogenesis, 2016, 55, 3-14.	1.3	28
52	Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radical Biology and Medicine, 2016, 90, 114-125.	1.3	72
53	Effects of 2,3-Dehydrosilybin and Its Galloyl Ester and Methyl Ether Derivatives on Human Umbilical Vein Endothelial Cells. Journal of Natural Products, 2016, 79, 812-820.	1.5	13
54	study of 2,3-dehydrosilybin and its galloyl esters as potential inhibitors of angiogenesis. Die Pharmazie, 2016, 71, 478-483.	0.3	2

#	Article	IF	CITATIONS
55	Effect of oral administration of green tea extract in various dosage schemes on oxidative stress status of mice in vivo. Acta Pharmaceutica, 2015, 65, 65-73.	0.9	11
56	Cranberry extract–enriched diets increase NAD(P)H:quinone oxidoreductase and catalase activities in obese but not in nonobese mice. Nutrition Research, 2015, 35, 901-909.	1.3	7
57	Prokaryotic and Eukaryotic Aryl Sulfotransferases: Sulfation of Quercetin and Its Derivatives. ChemCatChem, 2015, 7, 3152-3162.	1.8	22
58	"Non-Taxifolin" Derived Flavonolignans: Phytochemistry and Biology. Current Pharmaceutical Design, 2015, 21, 5489-5500.	0.9	33
59	Chemo-Enzymatic Synthesis of Silybin and 2,3-Dehydrosilybin Dimers. Molecules, 2014, 19, 4115-4134.	1.7	21
60	Isoquercitrin: Pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 2014, 68, 267-282.	1.8	317
61	Enzymatic oxidative dimerization of silymarin flavonolignans. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 24-30.	1.8	26
62	Biosafety and antioxidant effects of a beverage containing silymarin and arginine. A pilot, human intervention cross-over trial. Food and Chemical Toxicology, 2013, 56, 178-183.	1.8	22
63	Metabolic Profiling of Phenolic Acids and Oxidative Stress Markers after Consumption of <i>Lonicera caerulea</i> L. Fruit. Journal of Agricultural and Food Chemistry, 2013, 61, 4526-4532.	2.4	32
64	Synthesis and Antiangiogenic Activity of New Silybin Galloyl Esters. Journal of Medicinal Chemistry, 2011, 54, 7397-7407.	2.9	30
65	Antioxidant and antiviral activities of silybin fatty acid conjugates. European Journal of Medicinal Chemistry, 2010, 45, 1059-1067.	2.6	55
66	Protectivity of Blue Honeysuckle Extract against Oxidative Human Endothelial Cells and Rat Hepatocyte Damage. Journal of Agricultural and Food Chemistry, 2009, 57, 6584-6589.	2.4	53
67	Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chemistry, 2008, 107, 19-25.	4.2	142
68	Constituents and Antimicrobial Properties of Blue Honeysuckle: A Novel Source for Phenolic Antioxidants. Journal of Agricultural and Food Chemistry, 2008, 56, 11883-11889.	2.4	92
69	Maca (Lepidium meyenii) and yacon (Smallanthus sonchifolius) in combination with silymarin as food supplements: In vivo safety assessment. Food and Chemical Toxicology, 2008, 46, 1006-1013.	1.8	57
70	YACON (SMALLANTHUS SONCHIFOLIUS) - A TRADITIONAL CROP OF ANDEAN INDIANS AS A CHALLENGE FOR THE FUTURE - THE NEWS ABOUT BIOLOGICAL VARIATION AND CHEMICAL SUBSTANCES CONTENT. Acta Horticulturae, 2008, , 127-136.	0.1	3
71	Induction of Glucokinase mRNA by Dietary Phenolic Compounds in Rat Liver Cells in Vitro. Journal of Agricultural and Food Chemistry, 2007, 55, 7726-7731.	2.4	25
72	Biosafety, Antioxidant Status, and Metabolites in Urine after Consumption of Dried Cranberry Juice in Healthy Women:Â A Pilot Double-Blind Placebo-Controlled Trial. Journal of Agricultural and Food Chemistry, 2007, 55, 3217-3224.	2.4	98

#	Article	IF	CITATIONS
73	Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chemistry, 2007, 101, 912-917.	4.2	56
74	BERRY FRUITS AS A SOURCE OF BIOLOGICALLY ACTIVE COMPOUNDS: THE CASE OF LONICERA CAERULEA. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2007, 151, 163-174.	0.2	87
75	The Biological and Chemical Variability of Yacon. Journal of Agricultural and Food Chemistry, 2006, 54, 1347-1352.	2.4	55
76	The in vitro biological activity of Lepidium meyenii extracts. Cell Biology and Toxicology, 2006, 22, 91-99.	2.4	45
77	Radical Scavenging and Anti-Lipoperoxidative Activities ofSmallanthus sonchifoliusLeaf Extracts. Journal of Agricultural and Food Chemistry, 2005, 53, 5577-5582.	2.4	50
78	The effect of Smallanthus sonchifolius leaf extracts on rat hepatic metabolism. Cell Biology and Toxicology, 2004, 20, 109-120.	2.4	42
79	Antioxidant activity of extracts from the leaves of Smallanthus sonchifolius. European Journal of Nutrition, 2003, 42, 61-66.	1.8	62
80	Analysis of phenolic acids in plant materials using HPLC with amperometric detection at a platinum tubular electrode. Journal of Separation Science, 2003, 26, 739-742.	1.3	36
81	Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. Journal of Chromatography A, 2003, 1016, 89-98.	1.8	135
82	Smallanthus sonchifolius and Lepidium meyenii - prospective Andean crops for the prevention of chronic diseases. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2003, 147, 119-130.	0.2	104