Daeho Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6086057/publications.pdf

Version: 2024-02-01

304368 500791 1,472 29 22 28 citations h-index g-index papers 29 29 29 2439 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Corrosion and bone healing of Mg-Y-Zn-Zr-Ca alloy implants: Comparative in vivo study in a non-immobilized rat femoral fracture model. Journal of Biomaterials Applications, 2019, 33, 1178-1194.	1.2	16
2	In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS. Acta Biomaterialia, 2017, 50, 556-565.	4.1	47
3	Biomimetic Rotated Lamellar Plywood Motifs by Additive Manufacturing of Metal Alloy Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 648-657.	2.6	17
4	Cobalt based nanostructured alloys: Versatile high performance robust hydrogen evolution reaction electro-catalysts for electrolytic and photo-electrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42, 17049-17062.	3.8	35
5	Highly active robust oxide solid solution electro-catalysts for oxygen reduction reaction for proton exchange membrane fuel cell and direct methanol fuel cell cathodes. International Journal of Hydrogen Energy, 2017, 42, 24079-24089.	3.8	14
6	A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8; $T = S$, Se) for rechargeable magnesium batteries. Nano Research, 2017, 10, 4415-4435.	5.8	33
7	In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor. Acta Biomaterialia, 2016, 36, 361-368.	4.1	46
8	Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles â€" Efficient calcium phosphate based non-viral gene delivery systems. Materials Science and Engineering C, 2016, 69, 486-495.	3.8	18
9	Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo. Acta Biomaterialia, 2016, 45, 399-409.	4.1	24
10	Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomaterialia, 2016, 45, 375-386.	4.1	166
11	Nanostructured robust cobalt metal alloy based anode electro-catalysts exhibiting remarkably high performance and durability for proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2015, 3, 14015-14032.	5.2	27
12	High performance and durable nanostructured TiN supported Pt50–Ru50 anode catalyst for direct methanol fuel cell (DMFC). Journal of Power Sources, 2015, 293, 437-446.	4.0	88
13	Scribable multi-walled carbon nanotube-silicon nanocomposites: a viable lithium-ion battery system. Nanoscale, 2015, 7, 3504-3510.	2.8	38
14	Electrochemical Performance of Chemically and Solid State-Derived Chevrel Phase Mo ₆ T ₈ (T = S, Se) Positive Electrodes for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 5771-5782.	1.5	36
15	A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity. Journal of Materials Chemistry A, 2015, 3, 11117-11129.	5.2	35
16	High energy density titanium doped-vanadium oxide-vertically aligned CNT composite electrodes for supercapacitor applications. Journal of Materials Chemistry A, 2015, 3, 8413-8432.	5.2	64
17	Synthesis and electrochemical study of Mg1.5MnO3: A defect spinel cathode for rechargeable magnesium battery. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 202, 8-14.	1.7	9
18	WO ₃ based solid solution oxide – promising proton exchange membrane fuel cell anode electro-catalyst. Journal of Materials Chemistry A, 2015, 3, 18296-18309.	5.2	28

#	Article	IF	CITATION
19	Nitrogen and cobalt co-doped zinc oxide nanowires – Viable photoanodes for hydrogen generation via photoelectrochemical water splitting. Journal of Power Sources, 2015, 299, 11-24.	4.0	72
20	Synthesis, Osteoblast, and Osteoclast Viability of Amorphous and Crystalline Tri-Magnesium Phosphate. ACS Biomaterials Science and Engineering, 2015, 1, 52-63.	2.6	40
21	Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis. Journal of Power Sources, 2014, 269, 855-865.	4.0	43
22	Microwave Derived Facile Approach to Sn/Graphene Composite Anodes for, Lithium-Ion Batteries. Electrochimica Acta, 2014, 127, 299-306.	2.6	28
23	In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material. Acta Biomaterialia, 2013, 9, 8534-8547.	4.1	118
24	Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomaterialia, 2013, 9, 8593-8603.	4.1	198
25	In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials. Acta Biomaterialia, 2013, 9, 8518-8533.	4.1	113
26	A Simple Low Temperature Synthesis of Nanostructured Vanadium Nitride for Supercapacitor Applications. Journal of the Electrochemical Society, 2013, 160, A2195-A2206.	1.3	55
27	Finite Element Analysis of Magnesium Alloy Based Bone Fixation Devices. , 2013, , .		0
28	Microstructure of Mg–Zn–Ca thin film derived by pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1690-1694.	1.7	7
29	Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying. Materials Science and Engineering B: Solid-State Materials for Advanced	1.7	57