
Carmen Ciotonea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6085763/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBAâ€15 Catalyst. ChemSusChem, 2015, 8, 1885-1891.	3.6	161
2	Composition-Dependent Morphostructural Properties of Ni–Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous SBA-15 Silica. ACS Applied Materials & Interfaces, 2013, 5, 3010-3025.	4.0	140
3	Efficient degradation of clofibric acid by electro-enhanced peroxydisulfate activation with Fe-Cu/SBA-15 catalyst. Applied Catalysis B: Environmental, 2018, 230, 1-10.	10.8	90
4	Effect of the support on the hydrodeoxygenation of m -cresol over molybdenum oxide based catalysts. Applied Catalysis B: Environmental, 2017, 214, 57-66.	10.8	82
5	Facile synthesis of highly dispersed and thermally stable copper-based nanoparticles supported on SBA-15 occluded with P123 surfactant for catalytic applications. Journal of Catalysis, 2016, 339, 270-283.	3.1	48
6	Hydroconversion of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran and 2,5â€Dimethyltetrahydrofuran over Nonâ€promoted Ni/SBAâ€15. ChemCatChem, 2020, 12, 2050-2059.	1.8	41
7	Nanosized transition metals in controlled environments of phyllosilicate–mesoporous silica composites as highly thermostable and active catalysts. Chemical Communications, 2013, 49, 7665.	2.2	40
8	Structural and catalytic properties of mono- and bimetallic nickel–copper nanoparticles derived from MgNi(Cu)Al-LDHs under reductive conditions. Applied Catalysis A: General, 2015, 504, 92-102.	2.2	33
9	Synthesis of highly dispersed iron species within mesoporous (Al-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous and Mesoporous Materials, 2017, 241, 326-337.	2.2	32
10	Highly dispersed copper (oxide) nanoparticles prepared on SBA-15 partially occluded with the P123 surfactant: toward the design of active hydrogenation catalysts. Catalysis Science and Technology, 2017, 7, 5376-5385.	2.1	30
11	Preparation of nickel (oxide) nanoparticles confined in the secondary pore network of mesoporous scaffolds using melt infiltration. Catalysis Today, 2019, 334, 48-58.	2.2	26
12	Phyllosilicateâ€derived Nickel obalt Bimetallic Nanoparticles for the Catalytic Hydrogenation of Imines, Oximes and Nâ€heteroarenes. ChemCatChem, 2020, 12, 4652-4663.	1.8	25
13	Improved dispersion of transition metals in mesoporous materials through a polymer-assisted melt infiltration method. Catalysis Science and Technology, 2017, 7, 5448-5456.	2.1	23
14	A Simple and Green Procedure to Prepare Efficient Manganese Oxide Nanopowder for the Low Temperature Removal of Formaldehyde. ChemCatChem, 2017, 9, 2366-2376.	1.8	22
15	Flash Catalytic Pyrolysis of Polyethylene over (Alumino)silicate Materials. ChemCatChem, 2020, 12, 1109-1116.	1.8	17
16	Manipulating the physical states of confined ibuprofen in SBA-15 based drug delivery systems obtained by solid-state loading: Impact of the loading degree. Journal of Chemical Physics, 2020, 153, 154506.	1.2	17
17	Confining for Stability: Heterogeneous Catalysis with Transition Metal (Oxide) Nanoparticles Confined in the Secondary Pore Network of Mesoporous Scaffolds. ChemNanoMat, 2017, 3, 233-237.	1.5	14
18	Micro-/mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol. Applied Catalysis A: General, 2022, 633, 118527.	2.2	14

CARMEN CIOTONEA

#	Article	IF	CITATIONS
19	Controlling the distribution of cobalt (oxide) nanoparticles in the dual pore system of SBA-15 scaffolds. Microporous and Mesoporous Materials, 2016, 224, 176-189.	2.2	11
20	Hydrodeoxygenation of m-cresol over Pd/Al-SBA-15 catalysts: Effect of Al content on the deoxygenation reaction pathways. Applied Catalysis A: General, 2022, 641, 118686.	2.2	10
21	Enhancement of the dispersion and catalytic performances of copper in the hydrogenation of cinnamaldehyde by incorporation of aluminium into mesoporous SBA-15 silica. Applied Catalysis A: General, 2020, 598, 117615.	2.2	9
22	Emulsions Stabilized with Alumina-Functionalized Mesoporous Silica Particles. Langmuir, 2020, 36, 3212-3220.	1.6	9
23	Modified Red Mud Catalyst for Volatile Organic Compounds Oxidation. Catalysts, 2021, 11, 838.	1.6	9
24	Engineering pore morphology using silica template route over mesoporous cobalt oxide and its implications in atmospheric pressure carbon dioxide hydrogenation to olefins. Applied Materials Today, 2020, 19, 100586.	2.3	8
25	NO reduction by CO under oxidative conditions over CoCuAl mixed oxides derived from hydrotalcite-like compounds: Effect of water. Catalysis Today, 2022, 384-386, 97-105.	2.2	8
26	MnO _x â€loaded Mesoporous Silica for the Catalytic Oxidation of Formaldehyde. Effect of the Melt Infiltration Conditions on the Activity – Stability Behavior. ChemCatChem, 2020, 12, 1664-1675.	1.8	6
27	Assembly of SBA-15 into hierarchical porous monoliths replicating polymeric scaffolds. Microporous and Mesoporous Materials, 2022, 337, 111908.	2.2	5
28	Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: Impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General, 2021, 623, 118303.	2.2	4
29	Synthesis Strategies and Emerging Catalytic Applications of Siliceous Materials with Hierarchically Ordered Porosity. , 2017, , 189-215.		Ο
30	Cuâ€"Ga <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub></mml:math> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>0.2</td><td>0</td></mml:mrow<></mml:msub></mml:math 	0.2	0

/> <mml:mn>3 </mml:mn> </mml:msub> </mml:math>nanoparticles supported on ordered mesoporous silica for the catalytic hydrogenation of cinnamaldehyde. Comptes Rendus Chimie, 2022, 25, 81-94.