Maria Cornelia Iliuta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6085251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process. Chemical Engineering Journal, 2016, 283, 420-444.	12.7	263
2	Wetting phenomenon in membrane contactors – Causes and prevention. Journal of Membrane Science, 2014, 452, 332-353.	8.2	232
3	Sterically Hindered Amine-Based Absorbents for the Removal of CO ₂ from Gas Streams. Journal of Chemical & Engineering Data, 2012, 57, 635-669.	1.9	122
4	Development of Zirconium-Stabilized Calcium Oxide Absorbent for Cyclic High-Temperature CO ₂ Capture. Industrial & Engineering Chemistry Research, 2012, 51, 10390-10398.	3.7	99
5	Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation. Chemical Engineering Journal, 2013, 232, 280-289.	12.7	91
6	Photocatalytic valorization of glycerol to hydrogen: Optimization of operating parameters by artificial neural network. Applied Catalysis B: Environmental, 2017, 209, 483-492.	20.2	91
7	Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review. Biomass and Bioenergy, 2021, 146, 105968.	5.7	86
8	Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes. Applied Catalysis B: Environmental, 2017, 219, 183-193.	20.2	80
9	Development of Al-stabilized CaO–nickel hybrid sorbent–catalyst for sorption-enhanced steam methane reforming. Chemical Engineering Science, 2014, 109, 212-219.	3.8	67
10	CO ₂ Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling. Journal of Chemical & Engineering Data, 2011, 56, 1547-1554.	1.9	66
11	Sorption-enhanced dimethyl ether synthesis—Multiscale reactor modeling. Chemical Engineering Science, 2011, 66, 2241-2251.	3.8	66
12	A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming. Applied Catalysis B: Environmental, 2020, 265, 118535.	20.2	60
13	Hydrogen Production by Sorptionâ€Enhanced Steam Glycerol Reforming: Sorption Kinetics and Reactor Simulation. AICHE Journal, 2013, 59, 2105-2118.	3.6	59
14	Methane Nonoxidative Aromatization over Ruâ^'Mo/HZSM-5 in a Membrane Catalytic Reactor. Industrial & Engineering Chemistry Research, 2002, 41, 2371-2378.	3.7	54
15	Limestone Acidification Using Citric Acid Coupled with Two-Step Calcination for Improving the CO ₂ Sorbent Activity. Industrial & Engineering Chemistry Research, 2013, 52, 7002-7013.	3.7	54
16	Methane Nonoxidative Aromatization over Ruâ^'Mo/HZSM-5 at Temperatures up to 973 K in a Palladiumâ^'Silver/Stainless Steel Membrane Reactor. Industrial & Engineering Chemistry Research, 2003, 42, 323-330.	3.7	48
17	Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent–catalyst. Chemical Engineering and Processing: Process Intensification, 2014, 86, 96-103.	3.6	48

18 Solubility of Total Reduced Sulfurs (Hydrogen Sulfide, Methyl Mercaptan, Dimethyl Sulfide, and) Tj ETQq0 0 0 rgBT [Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
19	Analysis of regeneration of sterically hindered alkanolamines aqueous solutions with and without activator. Chemical Engineering Science, 2010, 65, 4746-4750.	3.8	44
20	Efficient approaches to overcome challenges in material development for conventional and intensified CO2 catalytic hydrogenation to CO, methanol, and DME. Applied Catalysis A: General, 2021, 617, 118119.	4.3	44
21	Analysis of Laplace–Young equation parameters and their influence on efficient CO2 capture in membrane contactors. Separation and Purification Technology, 2013, 118, 806-815.	7.9	43
22	CO ₂ removal by single and mixed amines in a hollowâ€fiber membrane module—investigation of contactor performance. AICHE Journal, 2015, 61, 955-971.	3.6	43
23	Sustainable Production of High-Purity Hydrogen by Sorption Enhanced Steam Reforming of Glycerol over CeO ₂ -Promoted Ca ₉ Al ₆ O ₁₈ –CaO/NiO Bifunctional Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 9774-9786.	6.7	42
24	Absorption of CO2 by AHPD–Pz aqueous blend in PTFE hollow fiber membrane contactors. Separation and Purification Technology, 2014, 138, 84-91.	7.9	39
25	Stability of aqueous amine solutions to thermal and oxidative degradation in the absence and the presence of CO 2. International Journal of Greenhouse Gas Control, 2014, 29, 16-21.	4.6	37
26	Development of residue coal fly ash supported nickel catalyst for H2 production via glycerol steam reforming. Applied Catalysis B: Environmental, 2021, 291, 119958.	20.2	37
27	Acceleration of the reaction of carbon dioxide into aqueous 2-amino-2-hydroxymethyl-1,3-propanediol solutions by piperazine addition. Chemical Engineering Science, 2009, 64, 2011-2019.	3.8	33
28	Investigation of CO ₂ removal by immobilized carbonic anhydrase enzyme in a hollowâ€fiber membrane bioreactor. AICHE Journal, 2017, 63, 2996-3007.	3.6	33
29	Kinetic study of the effects of pH on the photocatalytic hydrogen production from alcohols. International Journal of Hydrogen Energy, 2019, 44, 32030-32041.	7.1	32
30	Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Separation and Purification Technology, 2022, 296, 121299.	7.9	32
31	Flat sheet membrane contactor (FSMC) for CO 2 separation using aqueous amine solutions. Chemical Engineering Science, 2015, 123, 255-264.	3.8	31
32	Effects of Carbon Nanotube and Carbon Sphere Templates in TiO ₂ Composites for Photocatalytic Hydrogen Production. Industrial & Engineering Chemistry Research, 2019, 58, 2770-2783.	3.7	30
33	Kinetics of Methane Nonoxidative Aromatization over Ruâ^'Mo/HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 2003, 42, 3203-3209.	3.7	29
34	Current Developments and Future Trends in Photocatalytic Glycerol Valorization: Photocatalyst Development. Industrial & Engineering Chemistry Research, 2020, 59, 22330-22352.	3.7	28
35	Hydrophilic zeolite sorbents for Inâ€situ water removal in high temperature processes. Canadian Journal of Chemical Engineering, 2017, 95, 1842-1849.	1.7	27
36	Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: A spectroscopic and kinetic study. Chemical Engineering Journal, 2020, 382, 122732.	12.7	27

#	Article	IF	CITATIONS
37	Current developments and future trends in photocatalytic glycerol valorization: process analysis. Reaction Chemistry and Engineering, 2021, 6, 197-219.	3.7	26
38	Influence of steam addition during carbonation or calcination on the CO 2 capture performance of Ca 9 Al 6 O 18 CaO sorbent. Journal of Natural Gas Science and Engineering, 2016, 36, 1062-1069.	4.4	24
39	Enzyme-immobilized flat-sheet membrane contactor for green carbon capture. Chemical Engineering Journal, 2021, 421, 129587.	12.7	24
40	Enzymatic CO2 capture by immobilized hCA II in an intensified microreactor—Kinetic study of the catalytic hydration. International Journal of Greenhouse Gas Control, 2013, 15, 78-85.	4.6	22
41	Highly hydrophobic microporous lowâ€density polyethylene hollow fiber membranes by meltâ€extrusion coupled with saltâ€leaching technique. Polymers for Advanced Technologies, 2013, 24, 584-592.	3.2	22
42	A comparative study on the performance of M (Rh, Ru, Ni)-promoted metallurgical waste driven catalysts for H2 production by glycerol steam reforming. International Journal of Hydrogen Energy, 2021, 46, 32017-32035.	7.1	22
43	Ni-based catalysts supported on acid/alkali-activated coal fly ash residue for improved glycerol steam reforming. Applied Catalysis B: Environmental, 2022, 301, 120791.	20.2	22
44	Enzymatic CO 2 capture in countercurrent packed-bed column reactors with high performance random packings. International Journal of Greenhouse Gas Control, 2017, 63, 462-474.	4.6	21
45	Development of a Fe/Mg-bearing metallurgical waste stabilized-CaO/NiO hybrid sorbent-catalyst for high purity H2 production through sorption-enhanced glycerol steam reforming. International Journal of Hydrogen Energy, 2020, 45, 18452-18465.	7.1	21
46	An intrinsic kinetic model for liquidâ€phase photocatalytic hydrogen production. AICHE Journal, 2019, 65, e16724.	3.6	20
47	A closer look on the development and commercialization of membrane contactors for mass transfer and separation processes. Separation and Purification Technology, 2019, 227, 115679.	7.9	20
48	Valorization of Coal Fly Ash as a Stabilizer for the Development of Ni/CaO-Based Bifunctional Material. ACS Sustainable Chemistry and Engineering, 2020, 8, 3885-3895.	6.7	20
49	Integrated aqueous-phase glycerol reforming to dimethyl ether synthesis—A novel allothermal dual bed membrane reactor concept. Chemical Engineering Journal, 2012, 187, 311-327.	12.7	19
50	Embedding Ni in Ni–Al Mixed-Metal Alkoxide for the Synthesis of Efficient Coking Resistant Ni–CaO-Based Catalyst-Sorbent Bifunctional Materials for Sorption-Enhanced Steam Reforming of Glycerol. ACS Sustainable Chemistry and Engineering, 2020, 8, 16746-16756.	6.7	19
51	Morphological, chemical and thermal stability of microporous LDPE hollow fiber membranes in contact with single and mixed amine based CO2 absorbents. Separation and Purification Technology, 2012, 96, 117-123.	7.9	18
52	Catalytic CO2 hydration by immobilized and free human carbonic anhydrase II in a laminar flow microreactor – Model and simulations. Separation and Purification Technology, 2013, 107, 61-69.	7.9	18
53	Solubility of CO2 in and Density, Viscosity, and Surface Tension of Aqueous 2-Amino-1,3-propanediol (Serinol) Solutions. Journal of Chemical & Engineering Data, 2014, 59, 355-361.	1.9	17
54	Ni-Fe catalyst derived from mixed oxides Fe/Mg-bearing metallurgical waste for hydrogen production by steam reforming of biodiesel by-product: Investigation of catalyst synthesis parameters and temperature dependency of the reaction network. Applied Catalysis B: Environmental, 2020, 279, 119330.	20.2	17

MARIA CORNELIA ILIUTA

#	Article	IF	CITATIONS
55	CO 2 Sorbents for Sorption-Enhanced Steam Reforming. Advances in Chemical Engineering, 2017, 51, 97-205.	0.9	16
56	Enhanced enzyme-based CO2 capture in countercurrent packed-bed column reactors. Separation and Purification Technology, 2020, 248, 116908.	7.9	16
57	Kinetic study of glycerol steam reforming catalyzed by a Ni-promoted metallurgical residue. Chemical Engineering Journal, 2022, 429, 132278.	12.7	15
58	Gasâ ''Liquid Partition Coefficients and Henry's Law Constants of DMS in Aqueous Solutions of Fe(II) Chelate Complexes Using the Static Headspace Method. Journal of Chemical & Engineering Data, 2005, 50, 1700-1705.	1.9	14
59	Intensified phenol and p-cresol biodegradation for wastewater treatment in countercurrent packed-bed column bioreactors. Chemosphere, 2022, 286, 131716.	8.2	14
60	Hybrid enzymatic CO2 capture process in intensified flat sheet membrane contactors with immobilized carbonic anhydrase. Separation and Purification Technology, 2022, 287, 120505.	7.9	14
61	Noncovalent Immobilization of Optimized Bacterial Cytochrome P450 BM3 on Functionalized Magnetic Nanoparticles. Industrial & Engineering Chemistry Research, 2017, 56, 10981-10989.	3.7	13
62	Trends and advances in the development of coal fly ash-based materials for application in hydrogen-rich gas production: A review. Journal of Energy Chemistry, 2022, 73, 485-512.	12.9	13
63	CO ₂ Removal in Packed-Bed Columns and Hollow-Fiber Membrane Reactors. Investigation of Reactor Performance. Industrial & amp; Engineering Chemistry Research, 2015, 54, 12455-12465.	3.7	12
64	Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions. Minerals (Basel, Switzerland), 2019, 9, 680.	2.0	11
65	Biosyngas Production in an Integrated Aqueous-Phase Glycerol Reforming/Chemical Looping Combustion Process. Industrial & Engineering Chemistry Research, 2013, 52, 16142-16161.	3.7	10
66	Techno-economic assessment of CO2capture from aluminum smelter emissions using PZ activated AMP solutions. Canadian Journal of Chemical Engineering, 2016, 94, 761-770.	1.7	10
67	Impact of particle size in serpentine thermal treatment: Implications for serpentine dissolution in aqueous-phase using CO2 in flue gas conditions. Applied Clay Science, 2019, 182, 105286.	5.2	10
68	Selective adsorption of water vapor in the presence of carbon dioxide on hydrophilic zeolites at high temperatures. Separation and Purification Technology, 2022, 282, 120008.	7.9	10
69	Photocatalytic conversion of alcohols to hydrogen and carbon-containing products: A cleaner alcohol valorization approach. Journal of Cleaner Production, 2021, 318, 128546.	9.3	9
70	Effect of impurities on glycerol steam reforming over Ni-promoted metallurgical waste driven catalyst. International Journal of Hydrogen Energy, 2022, 47, 4614-4630.	7.1	9
71	Solubility of Oxygen in Aqueous Solutions of Fe(III) Complexes oftrans-1,2-Cyclohexanediaminetetraacetic Acid (CDTA) as a Function of Temperature and Chelate Concentration. Journal of Chemical & Engineering Data, 2004, 49, 1691-1696.	1.9	8
72	Enzymatic Fatty Acid Hydroxylation in a Liquid–Liquid Slug Flow Microreactor. Industrial & Engineering Chemistry Research, 2015, 54, 7787-7799.	3.7	5

#	Article	IF	CITATIONS
73	Covalent immobilization of cytochrome P450 BM3 (R966D/W1046S) on glutaraldehyde activated SPIONs. Canadian Journal of Chemical Engineering, 2018, 96, 2227-2235.	1.7	5
74	Kinetics of Enzymatic Hydroxylation by Free and MNPs-Immobilized NADH-Dependent Cytochrome P450 BM3 from <i>Bacillus megaterium</i> . Industrial & Engineering Chemistry Research, 2019, 58, 808-815.	3.7	2
75	Application of industrial solid wastes in catalyst and chemical sorbent development for hydrogen/syngas production by conventional and intensified steam reforming. , 2020, , 21-55.		2
76	Aqueous 2-amino-2-hydroxymethyl-1,3-propanediol as Potential Carbon Dioxide Capture Solutions. , 2006, , .		0