Iwao Mogi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6085207/publications.pdf Version: 2024-02-01

Ινιλο Μοςι

#	Article	IF	CITATIONS
1	Nanobubble formation from ionic vacancies in an electrode reaction on a fringed disk electrode under a uniform vertical magnetic field â~'1. Formation process in a vertical magnetohydrodynamic (MHD) flow. Journal of Electroanalytical Chemistry, 2022, 914, 116291.	3.8	4
2	Nanobubble formation from ionic vacancies in an electrode reaction on a fringed disk electrode under a uniform vertical magnetic field – 2. Measurement of the angular velocity of a vertical magnetohydrodynamic (MHD) flow by the microbubbles originating from ionic vacancies. Journal of Electroanalytical Chemistry, 2022, 916, 116375.	3.8	3
3	Breaking of Odd Chirality in Magnetoelectrodeposition. Magnetochemistry, 2022, 8, 67.	2.4	1
4	Theory of Chiral Electrodeposition by Chiral Micro-Nano-Vortices under a Vertical Magnetic Field -1: 2D Nucleation by Micro-Vortices. Magnetochemistry, 2022, 8, 71.	2.4	0
5	Breaking of Odd Chirality in Magnetoelectrodeposition of Copper Films on Micro-Electrodes. Magnetochemistry, 2021, 7, 142.	2.4	3
6	Fluctuation Effects of Magnetohydrodynamic Micro-Vortices on Odd Chirality in Magnetoelectrolysis. Magnetochemistry, 2020, 6, 43.	2.4	10
7	Long-Term Electrodeposition under a Uniform Parallel Magnetic Field. 1. Instability of Two-Dimensional Nucleation in an Electric Double Layer. Journal of Physical Chemistry B, 2020, 124, 11854-11869.	2.6	8
8	Excess heat production in the redox couple reaction of ferricyanide and ferrocyanide. Scientific Reports, 2020, 10, 20072.	3.3	7
9	Long-Term Electrodeposition under a Uniform Parallel Magnetic Field. 2. Flow-Mode Transition from Laminar MHD Flow to Convection Cells with Two-Dimensional (2D) Nucleation. Journal of Physical Chemistry B, 2020, 124, 11870-11881.	2.6	2
10	Theory of microscopic electrodeposition under a uniform parallel magnetic field - 1. Nonequilibrium fluctuations of magnetohydrodynamic (MHD) flow. Journal of Electroanalytical Chemistry, 2019, 848, 113254.	3.8	17
11	Theory of microscopic electrodeposition under a uniform parallel magnetic field - 2. Suppression of 3D nucleation by micro-MHD flow. Journal of Electroanalytical Chemistry, 2019, 847, 113255.	3.8	15
12	Surface Chirality in Rotational Magnetoelectrodeposition of Copper Films. Magnetochemistry, 2019, 5, 53.	2.4	9
13	Effects of Vertical Magnetohydrodynamic Flows on Chiral Surface Formation in Magnetoelectrolysis. Magnetochemistry, 2018, 4, 40.	2.4	6
14	Chiral Symmetry Breaking in Magnetoelectrochemical Etching with Chloride Additives. Molecules, 2018, 23, 19.	3.8	11
15	Magneto-Dendrite Effect: Copper Electrodeposition under High Magnetic Field. Scientific Reports, 2017, 7, 45511.	3.3	29
16	Communication—Visualization of Magnetohydrodynamic Micro-Vortices with Guanine Micro-Crystals. Journal of the Electrochemical Society, 2017, 164, H584-H586.	2.9	15
17	Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction. Scientific Reports, 2016, 6, 28927.	3.3	15
18	Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode. Scientific Reports, 2016, 6, 19795.	3.3	18

Iwao Mogi

#	Article	IF	CITATIONS
19	Tailoring of Surface Chirality by Micro-Vortices and Specific Adsorption in Magnetoelectrodeposition. Bulletin of the Chemical Society of Japan, 2015, 88, 1479-1485.	3.2	21
20	Surface chirality induced by rotational electrodeposition in magnetic fields. Scientific Reports, 2013, 3, 2574.	3.3	37
21	Enantioselective Recognition of Tartaric Acid on Magnetoelectrodeposited Copper Film Electrodes. Chemistry Letters, 2012, 41, 1439-1441.	1.3	20
22	Chiral Recognition of Amino Acids by Magnetoelectrodeposited Cu Film Electrodes. International Journal of Electrochemistry, 2011, 2011, 1-6.	2.4	18
23	Chirality of magneto-electrodeposited metal film electrodes. Science and Technology of Advanced Materials, 2008, 9, 024210.	6.1	4
24	Chiral Electrode Behavior of Magneto-electrodeposited Silver Films. ISIJ International, 2007, 47, 585-587.	1.4	22
25	Electrocatalytic chirality on magneto-electropolymerized polyaniline electrodes. Journal of Solid State Electrochemistry, 2007, 11, 751-756.	2.5	18
26	Chiral recognition of magneto-electropolymerized polyaniline film electrodes. Science and Technology of Advanced Materials, 2006, 7, 342-345.	6.1	14
27	Chirality of Magnetoelectropolymerized Polyaniline Electrodes. Japanese Journal of Applied Physics, 2005, 44, L199-L201.	1.5	14
28	Bulky cation effects on magnetoelectropolymerized polypyrrole. Journal of Electroanalytical Chemistry, 2001, 507, 198-201.	3.8	4
29	Magnetoelectropolymerization Effects on Hydrogen Evolution from a Polypyrrole Electrode. Materials Transactions, JIM, 2000, 41, 966-969.	0.9	5
30	Effects of Magnetoelectropolymerization on Doping-Undoping Behavior of Polypyrrole. Electrochemistry, 1999, 67, 1051-1053.	1.4	17
31	Magneto–electropolymerized film formation of polypyrrole. Microelectronic Engineering, 1998, 43-44, 739-744.	2.4	7
32	Magnetic-Field-Induced Deactivation of Polypyrrole Films in Repeated Redox Cycles. Bulletin of the Chemical Society of Japan, 1997, 70, 2337-2340.	3.2	9
33	Pattern Formation in Magneto-Electropolymerization of Pyrrole. Electrochemistry, 1996, 64, 842-844.	0.3	17
34	Dense Radial Growth of Silver Metal Leavesin a High Magnetic Field. Journal of the Physical Society of Japan, 1991, 60, 3200-3202.	1.6	95