Yeon Sik Jung

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6085099/yeon-sik-jung-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,746 85 151 47 h-index g-index citations papers 8,625 6.13 12.2 159 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
151	Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis <i>Biosensors and Bioelectronics</i> , 2022 , 202, 113991	11.8	1
150	Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability <i>Advanced Science</i> , 2022 , e2104519	13.6	2
149	Metal oxide charge transfer complex for effective energy band tailoring in multilayer optoelectronics <i>Nature Communications</i> , 2022 , 13, 75	17.4	О
148	Comparative Study of Thermoelectric Properties of SbSiTe and BiSiTe ACS Applied Materials & Interfaces, 2022,	9.5	2
147	Modulation and Modeling of Three-Dimensional Nanowire Assemblies Targeting Gas Sensors with High Response and Reliability (Adv. Funct. Mater. 10/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270065	15.6	
146	Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures. <i>Nature Communications</i> , 2021 , 12, 6420	17.4	7
145	Unconventional grain growth suppression in oxygen-rich metal oxide nanoribbons. <i>Science Advances</i> , 2021 , 7, eabh2012	14.3	3
144	Synergistic Integration of Chemo-Resistive and SERS Sensing for Label-Free Multiplex Gas Detection (Adv. Mater. 44/2021). <i>Advanced Materials</i> , 2021 , 33, 2170350	24	
143	Vertically aligned nanostructures for a reliable and ultrasensitive SERS-active platform: Fabrication and engineering strategies. <i>Nano Today</i> , 2021 , 37, 101063	17.9	11
142	Hierarchically layered nanocomposite electrodes formed by spray-injected MXene nanosheets for ultrahigh-performance flexible supercapacitors. <i>Applied Surface Science</i> , 2021 , 549, 149226	6.7	5
141	Extreme-Pressure Imprint Lithography for Heat and Ultraviolet-Free Direct Patterning of Rigid Nanoscale Features. <i>ACS Nano</i> , 2021 , 15, 10464-10471	16.7	2
140	A Systematic Study of the Interactions in the Top Electrode/Capping Layer/Thin Film Encapsulation of Transparent OLEDs. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 93, 237-244	6.3	3
139	Order-disorder transition-induced band nestification in AgBiSe2tuBiSe2 solid solutions for superior thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 4648-4657	13	8
138	High-performance ultracapacitor electrodes realized by 3-dimensionally bicontinuous block copolymer nanostructures with enhanced ion kinetics. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16119-	-16928	О
137	Conformation-modulated three-dimensional electrocatalysts for high-performance fuel cell electrodes. <i>Science Advances</i> , 2021 , 7,	14.3	4
136	Synergistic SERS Enhancement in GaN-Ag Hybrid System toward Label-Free and Multiplexed Detection of Antibiotics in Aqueous Solutions. <i>Advanced Science</i> , 2021 , 8, e2100640	13.6	4
135	Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in p-Type PbTe. <i>Advanced Science</i> , 2021 , 8, e2100895	13.6	9

(2020-2021)

134	Synergistic Integration of Chemo-Resistive and SERS Sensing for Label-Free Multiplex Gas Detection. <i>Advanced Materials</i> , 2021 , 33, e2105199	24	4
133	Microcellular sensing media with ternary transparency states for fast and intuitive identification of unknown liquids. <i>Science Advances</i> , 2021 , 7, eabg8013	14.3	1
132	Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces. <i>Nature Communications</i> , 2021 , 12, 40	17.4	7
131	Engineering Nanoscale Interfaces of Metal/Oxide Nanowires to Control Catalytic Activity. <i>ACS Nano</i> , 2020 , 14, 8335-8342	16.7	9
130	Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. <i>Nature Communications</i> , 2020 , 11, 3040	17.4	22
129	Selective, Quantitative, and Multiplexed Surface-Enhanced Raman Spectroscopy Using Aptamer-Functionalized Monolithic Plasmonic Nanogrids Derived from Cross-Point Nano-Welding. <i>Advanced Functional Materials</i> , 2020 , 30, 2000612	15.6	12
128	Carboxylic Acid-Functionalized, Graphitic Layer-Coated Three-Dimensional SERS Substrate for Label-Free Analysis of Alzheimer's Disease Biomarkers. <i>Nano Letters</i> , 2020 , 20, 2576-2584	11.5	35
127	Surface wrinkle formation by liquid crystalline polymers for significant light extraction enhancement on quantum dot light-emitting diodes. <i>Optics Express</i> , 2020 , 28, 26519-26530	3.3	4
126	Scalable Nanofabrication of Plasmonic Nanostructures for Trace-Amount Molecular Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS) 2020 , 71-92		
125	Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts. <i>Nature Communications</i> , 2020 , 11, 4921	17.4	28
124	Polarized ultraviolet emitters with Al wire-grid polarizers fabricated by solvent-assisted nanotransfer process. <i>Nanotechnology</i> , 2020 , 31, 045304	3.4	1
123	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. <i>Nature Communications</i> , 2020 , 11, 103	17.4	110
122	Cascade domino lithography for extreme photon squeezing. <i>Materials Today</i> , 2020 , 39, 89-97	21.8	18
121	Template Dissolution Interfacial Patterning of Single Colloids for Nanoelectrochemistry and Nanosensing. <i>ACS Nano</i> , 2020 ,	16.7	13
120	Metallic Woodpile Nanostructures for Femtomolar Sensing of Alzheimer's Neurofilament Lights. <i>ACS Nano</i> , 2020 , 14, 10376-10384	16.7	5
119	Thermally assisted nanotransfer printing with sub-20-nm resolution and 8-inch wafer scalability. <i>Science Advances</i> , 2020 , 6, eabb6462	14.3	15
118	Simulation and Fabrication of Nanoscale Spirals Based on Dual-Scale Self-Assemblies. <i>ACS Applied Materials & ACS Applied & ACS Ap</i>	9.5	3
117	Highly Efficient Deep Blue Cd-Free Quantum Dot Light-Emitting Diodes by a p-Type Doped Emissive Layer. <i>Small</i> , 2020 , 16, e2002109	11	10

116	Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide. <i>Nanoscale Advances</i> , 2020 , 2, 4410-4416	5.1	2
115	Desolvation-Triggered Versatile Transfer-Printing of Pure BN Films with Thermal-Optical Dual Functionality. <i>Advanced Materials</i> , 2020 , 32, e2002099	24	4
114	Fabrication and Applications of 3D Nanoarchitectures for Advanced Electrocatalysts and Sensors. <i>Advanced Materials</i> , 2020 , 32, e1907500	24	10
113	Universal Synthesis of Porous Inorganic Nanosheets via Graphene-Cellulose Templating Route. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 34100-34108	9.5	7
112	Order-of-Magnitude, Broadband-Enhanced Light Emission from Quantum Dots Assembled in Multiscale Phase-Separated Block Copolymers. <i>Nano Letters</i> , 2019 , 19, 6827-6838	11.5	14
111	Natural-Wood-Derived Lignosulfonate Ionomer as Multifunctional Binder for High-Performance LithiumBulfur Battery. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17580-17586	8.3	24
110	Tuning Solute-Redistribution Dynamics for Scalable Fabrication of Colloidal Quantum-Dot Optoelectronics. <i>Advanced Materials</i> , 2019 , 31, e1805886	24	20
109	Titanium(III) Sulfide Nanoparticles Coated with Multicomponent Oxide (TiBD) as a Conductive Polysulfide Scavenger for LithiumBulfur Batteries. <i>Electronic Materials Letters</i> , 2019 , 15, 613-622	2.9	3
108	Siloxane-Encapsulated Upconversion Nanoparticle Hybrid Composite with Highly Stable Photoluminescence against Heat and Moisture. <i>ACS Applied Materials & District Action States</i> , 2019, 11, 1595	2-위 <i>5</i> 95	9 ⁵
107	Regioregularity controlled phase behavior for Poly(3-hexylthiophene): A combined study of simple coarse-grained simulation and experiment. <i>Polymer</i> , 2019 , 178, 121569	3.9	1
106	Ultrasensitive MoS photodetector by serial nano-bridge multi-heterojunction. <i>Nature Communications</i> , 2019 , 10, 4701	17.4	35
105	Suppressing Interfacial Dipoles to Minimize Open-Circuit Voltage Loss in Quantum Dot Photovoltaics. <i>Advanced Energy Materials</i> , 2019 , 9, 1901938	21.8	8
104	Versatile, transferrable 3-dimensionally nanofabricated Au catalysts with high-index crystal planes for highly efficient and robust electrochemical CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6045-6052	13	22
103	Nanopatterned High-Frequency Supporting Structures Stably Eliminate Substrate Effects Imposed on Two-Dimensional Semiconductors. <i>Nano Letters</i> , 2018 , 18, 2893-2902	11.5	2
102	Photo-Reconfigurable Azopolymer Etch Mask: Photofluidization-Driven Reconfiguration and Edge Rectangularization. <i>Small</i> , 2018 , 14, e1703250	11	7
101	Palladium-Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing. <i>Small</i> , 2018 , 14, 1703691	11	35
100	Synthesis of colloidal VO2 nanoparticles for thermochromic applications. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 176, 266-272	6.4	20
99	Transferrable Plasmonic Au Thin Film Containing Sub-20 nm Nanohole Array Constructed via High-Resolution Polymer Self-Assembly and Nanotransfer Printing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 2216-2223	9.5	16

(2017-2018)

98	Spontaneous Registration of Sub-10 nm Features Based on Subzero Celsius Spin-Casting of Self-Assembling Building Blocks Directed by Chemically Encoded Surfaces. <i>ACS Nano</i> , 2018 , 12, 8224-8	23 ¹ 6.7	5
97	Engraving High-Density Nanogaps in Gold Thin Films via Sequential Anodization and Reduction for Surface-Enhanced Raman Spectroscopy Applications. <i>Chemistry of Materials</i> , 2018 , 30, 6183-6191	9.6	9
96	Plasmon-Enhanced Photodetection in Ferromagnet/Nonmagnet Spin Thermoelectric Structures. <i>Advanced Functional Materials</i> , 2018 , 28, 1802936	15.6	3
95	Molecular structure engineering of dielectric fluorinated polymers for enhanced performances of triboelectric nanogenerators. <i>Nano Energy</i> , 2018 , 53, 37-45	17.1	29
94	Extremely Small Pyrrhotite Fe S Nanocrystals with Simultaneous Carbon-Encapsulation for High-Performance Na-Ion Batteries. <i>Small</i> , 2018 , 14, 1702816	11	49
93	Individual Confinement of Block Copolymer Microdomains in Nanoscale Crossbar Templates. <i>Advanced Functional Materials</i> , 2018 , 29, 1805795	15.6	4
92	Thermodynamic and Kinetic Tuning of Block Copolymer Based on Random Copolymerization for High-Quality Sub-6 nm Pattern Formation. <i>Advanced Functional Materials</i> , 2018 , 28, 1800765	15.6	15
91	Direct Fabrication of Micro/Nano-Patterned Surfaces by Vertical-Directional Photofluidization of Azobenzene Materials. <i>ACS Nano</i> , 2017 , 11, 1320-1327	16.7	44
90	Area-Selective Lift-Off Mechanism Based on Dual-Triggered Interfacial Adhesion Switching: Highly Facile Fabrication of Flexible Nanomesh Electrode. <i>ACS Nano</i> , 2017 , 11, 3506-3516	16.7	27
89	Effective Suppression of Polysulfide Dissolution by Uniformly Transfer-Printed Conducting Polymer on Sulfur Cathode for Li-S Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A6417-A6421	3.9	21
88	Regioregularity-Driven Morphological Transition of Poly(3-hexylthiophene)-Based Block Copolymers. <i>Macromolecules</i> , 2017 , 50, 1902-1908	5.5	27
87	Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries. <i>Electronic Materials Letters</i> , 2017 , 13, 136-141	2.9	8
86	Interfacial Energy-Controlled Top Coats for Gyroid/Cylinder Phase Transitions of Polystyrene-block-polydimethylsiloxane Block Copolymer Thin Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 17427-17434	9.5	12
85	Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism of MoS for Nanodevices. <i>ACS Applied Materials & Description</i> (1997) Atomic Layer Etching Mechanism (1997) Atomic Layer Etching Mechanism (1997) Atomic Layer Etching Mechanism (1997) Atomic Layer Etching (1997) Atomic Layer	9.5	59
84	Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction. <i>Electronic Materials Letters</i> , 2017 , 13, 57-65	2.9	26
83	Synthesis of poly(styrene-b-4-(tert-butyldimethylsiloxy)styrene) block copolymers and characterization of their self-assembled patterns. <i>Molecular Systems Design and Engineering</i> , 2017 , 2, 589-596	4.6	5
82	Long-Term Stable 2H-MoS Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS. <i>ACS Omega</i> , 2017 , 2, 4678-4687	3.9	30
81	Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars. <i>ACS Nano</i> , 2017 , 11, 7821-7828	16.7	88

80	Nanotransplantation Printing of Crystallographic-Orientation-Controlled Single-Crystalline Nanowire Arrays on Diverse Surfaces. <i>ACS Nano</i> , 2017 , 11, 11642-11652	16.7	12
79	Fabrication of 50 nm scale Pt nanostructures by block copolymer (BCP) and its characteristics of surface-enhanced Raman scattering (SERS). <i>RSC Advances</i> , 2016 , 6, 70756-70762	3.7	9
78	Block Copolymer with an Extremely High Block-to-Block Interaction for a Significant Reduction of Line-Edge Fluctuations in Self-Assembled Patterns. <i>Chemistry of Materials</i> , 2016 , 28, 5680-5688	9.6	24
77	Highly Asymmetric n(+)-p Heterojunction Quantum-Dot Solar Cells with Significantly Improved Charge-Collection Efficiencies. <i>Advanced Materials</i> , 2016 , 28, 1780-7	24	20
76	Surface-Shielding Nanostructures Derived from Self-Assembled Block Copolymers Enable Reliable Plasma Doping for Few-Layer Transition Metal Dichalcogenides. <i>Advanced Functional Materials</i> , 2016 , 26, 5631-5640	15.6	14
75	Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric-Field Concentrators. <i>ACS Nano</i> , 2016 , 10, 9478-9488	16.7	71
74	3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis. <i>Advanced Materials</i> , 2016 , 28, 8695-8704	24	127
73	Sequentially Self-Assembled Rings-in-Mesh Nanoplasmonic Arrays for Surface-Enhanced Raman Spectroscopy. <i>Chemistry of Materials</i> , 2015 , 27, 5007-5013	9.6	27
72	Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness. <i>Nano Letters</i> , 2015 , 15, 5059-67	11.5	63
71	Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current. <i>Chemistry of Materials</i> , 2015 , 27, 2673-2677	9.6	10
70	Flexible one diode-one phase change memory array enabled by block copolymer self-assembly. <i>ACS Nano</i> , 2015 , 9, 4120-8	16.7	53
69	Enhancing the Directed Self-assembly Kinetics of Block Copolymers Using Binary Solvent Mixtures. <i>ACS Applied Materials & Directed Self-assembly Kinetics of Block Copolymers Using Binary Solvent Mixtures.</i>	9.5	16
68	Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. <i>ACS Nano</i> , 2015 , 9, 12115-23	16.7	250
67	Single Nanoparticle Localization in the Perforated Lamellar Phase of Self-Assembled Block Copolymer Driven by Entropy Minimization. <i>Macromolecules</i> , 2015 , 48, 7938-7944	5.5	6
66	Soft Patchy Particles of Block Copolymers from Interface-Engineered Emulsions. ACS Nano, 2015, 9, 113	3 38./ 1	62
65	In Situ Nanolithography with Sub-10 nm Resolution Realized by Thermally Assisted Spin-Casting of a Self-Assembling Polymer. <i>Advanced Materials</i> , 2015 , 27, 4814-22	24	18
64	Eliminating the Trade-Off between the Throughput and Pattern Quality of Sub-15 nm Directed Self-Assembly via Warm Solvent Annealing. <i>Advanced Functional Materials</i> , 2015 , 25, 306-315	15.6	45
63	Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. <i>Nano Letters</i> , 2014 , 14, 7031-8	11.5	258

(2012-2014)

62	High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. <i>Nature Communications</i> , 2014 , 5, 5387	17.4	125
61	Tailoring of the PbS/metal interface in colloidal quantum dot solar cells for improvements of performance and air stability. <i>Energy and Environmental Science</i> , 2014 , 7, 3052	35.4	48
60	Reliable control of filament formation in resistive memories by self-assembled nanoinsulators derived from a block copolymer. <i>ACS Nano</i> , 2014 , 8, 9492-502	16.7	77
59	Deep-nanoscale pattern engineering by immersion-induced self-assembly. <i>ACS Nano</i> , 2014 , 8, 10009-18	16.7	39
58	Three-dimensional nanofabrication by block copolymer self-assembly. <i>Advanced Materials</i> , 2014 , 26, 4386-96	24	141
57	Extremely High Yield Conversion from Low-Cost Sand to High-Capacity Si Electrodes for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1400622	21.8	66
56	Long-range ordered self-assembly of novel acrylamide-based diblock copolymers for nanolithography and metallic nanostructure fabrication. <i>Advanced Materials</i> , 2014 , 26, 2894-900	24	10
55	Proximity injection of plasticizing molecules to self-assembling polymers for large-area, ultrafast nanopatterning in the sub-10-nm regime. <i>ACS Nano</i> , 2013 , 7, 6747-57	16.7	65
54	Host-guest self-assembly in block copolymer blends. Scientific Reports, 2013, 3, 3190	4.9	29
53	Porous silicon nanowires for lithium rechargeable batteries. <i>Nanotechnology</i> , 2013 , 24, 424008	3.4	33
52	Ultra-High Optical Transparency of Robust, Graded-Index, and Anti-Fogging Silica Coating Derived from Si-Containing Block Copolymers. <i>Advanced Optical Materials</i> , 2013 , 1, 428-433	8.1	28
51	Localized surface plasmon-enhanced nanosensor platform using dual-responsive polymer nanocomposites. <i>Nanoscale</i> , 2013 , 5, 7403-9	7.7	14
50	Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. <i>ACS Nano</i> , 2013 , 7, 2651-8	16.7	66
49	Li3V2(PO4)3/Conducting Polymer as a High Power 4 V-Class Lithium Battery Electrode. <i>Advanced Energy Materials</i> , 2013 , 3, 1004-1007	21.8	68
48	Current density enhancement nano-contact phase-change memory for low writing current. <i>Applied Physics Letters</i> , 2013 , 103, 033116	3.4	7
47	Low Power Phase Change Memory via Block Copolymer Self-assembly Technology. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1556, 1		
46	Uniform graphene quantum dots patterned from self-assembled silica nanodots. <i>Nano Letters</i> , 2012 , 12, 6078-83	11.5	165
45	Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. <i>Nano Letters</i> , 2012 , 12, 1235-40	11.5	78

44	Layer-structured phase-segregation of red-emitting quantum dots from green-emitting small molecule-embedded polymer film. <i>Macromolecular Research</i> , 2012 , 20, 1121-1123	1.9	
43	Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. <i>Nanoscale</i> , 2012 , 4, 6870-5	7.7	7°
42	Lithium-Ion Batteries: A Stretchable Polymerlarbon Nanotube Composite Electrode for Flexible Lithium-Ion Batteries: Porosity Engineering by Controlled Phase Separation (Adv. Energy Mater. 8/2012). Advanced Energy Materials, 2012 , 2, 914-914	21.8	1
41	Directed self-assembly with sub-100 degrees Celsius processing temperature, sub-10 nanometer resolution, and sub-1 minute assembly time. <i>Small</i> , 2012 , 8, 3762-8	11	73
40	Nanotransfer printing with sub-10 nm resolution realized using directed self-assembly. <i>Advanced Materials</i> , 2012 , 24, 3526-31	24	83
39	Scalable fabrication of silicon nanotubes and their application to energy storage. <i>Advanced Materials</i> , 2012 , 24, 5452-6	24	304
38	A Stretchable PolymerCarbon Nanotube Composite Electrode for Flexible Lithium-Ion Batteries: Porosity Engineering by Controlled Phase Separation. <i>Advanced Energy Materials</i> , 2012 , 2, 976-982	21.8	128
37	Highly tunable self-assembled nanostructures from a poly(2-vinylpyridine-b-dimethylsiloxane) block copolymer. <i>Nano Letters</i> , 2011 , 11, 4095-101	11.5	177
36	Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. <i>Nature Nanotechnology</i> , 2010 , 5, 256-60	28.7	226
35	A path to ultranarrow patterns using self-assembled lithography. <i>Nano Letters</i> , 2010 , 10, 1000-5	11.5	212
34	Nanoimprint-induced molecular stacking and pattern stabilization in a solution-processed subphthalocyanine film. <i>ACS Nano</i> , 2010 , 4, 2627-34	16.7	13
33	Enhancing the Potential of Block Copolymer Lithography with Polymer Self-Consistent Field Theory Simulations. <i>Macromolecules</i> , 2010 , 43, 8290-8295	5.5	36
32	Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. <i>Nano Letters</i> , 2010 , 10, 2454-60	11.5	267
31	Fabrication of diverse metallic nanowire arrays based on block copolymer self-assembly. <i>Nano Letters</i> , 2010 , 10, 3722-6	11.5	96
30	Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns. <i>Advanced Materials</i> , 2009 , 21, 2540-2545	24	222
29	Negative thermal quenching in undoped ZnO and Ga-doped ZnO film grown on c-Al2O3 (0001) by plasma-assisted molecular beam epitaxy. <i>Journal of Electroceramics</i> , 2009 , 23, 331-334	1.5	4
28	Cobalt nanoparticle arrays made by templated solid-state dewetting. Small, 2009, 5, 860-5	11	91
27	Well-ordered thin-film nanopore arrays formed using a block-copolymer template. <i>Small</i> , 2009 , 5, 1654	-9 ₁₁	70

(2004-2008)

26	Nanofabricated concentric ring structures by templated self-assembly of a diblock copolymer. <i>Nano Letters</i> , 2008 , 8, 2975-81	11.5	112
25	Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography. <i>Nano Letters</i> , 2008 , 8, 3776-80	11.5	181
24	Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. <i>Science</i> , 2008 , 321, 939-43	33.3	703
23	Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content. <i>Nano Letters</i> , 2008 , 8, 3434-40	11.5	43
22	Si-containing block copolymers for self-assembled nanolithography. <i>Journal of Vacuum Science & Technology B</i> , 2008 , 26, 2489-2494		75
21	Photoluminescence of Ga-doped ZnO film grown on c-Al2O3 (0001) by plasma-assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2007 , 102, 073114	2.5	39
20	Orientation-controlled self-assembled nanolithography using a polystyrene-polydimethylsiloxane block copolymer. <i>Nano Letters</i> , 2007 , 7, 2046-50	11.5	386
19	Luminescence of bound excitons in epitaxial ZnO thin films grown by plasma-assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2006 , 99, 013502	2.5	38
18	Ferromagnetism in 200-MeV Ag+15-ion-irradiated Co-implanted ZnO thin films. <i>Applied Physics Letters</i> , 2006 , 88, 142502	3.4	43
17	Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam. <i>Applied Surface Science</i> , 2006 , 252, 5877-5891	6.7	91
16	Dependences of the surface and the optical properties on the O2/O2+Ar flow-rate ratios for ZnO thin films grown on ZnO buffer layers. <i>Applied Surface Science</i> , 2006 , 252, 8121-8125	6.7	4
15	Electron transport in high quality undoped ZnO film grown by plasma-assisted molecular beam epitaxy. <i>Solid State Communications</i> , 2006 , 137, 474-477	1.6	14
14	Enhancement of the surface and structural properties of ZnO epitaxial films grown on Al2O3 substrates utilizing annealed ZnO buffer layers. <i>Journal of Electroceramics</i> , 2006 , 17, 283-285	1.5	2
13	Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. <i>Journal of Applied Physics</i> , 2005 , 97, 044305	2.5	61
12	A stationary plasma thruster for modification of polymer and ceramic surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2005 , 239, 440-450	1.2	10
11	Two-dimensional growth of ZnO epitaxial films on c-Al2O3 (0001) substrates with optimized growth temperature and low-temperature buffer layer by plasma-assisted molecular beam epitaxy. <i>Journal of Crystal Growth</i> , 2005 , 274, 418-424	1.6	32
10	A spectroscopic ellipsometry study on the variation of the optical constants of tin-doped indium oxide thin films during crystallization. <i>Solid State Communications</i> , 2004 , 129, 491-495	1.6	27
9	Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films. <i>Applied Surface Science</i> , 2004 , 221, 136-142	6.7	79

5 4	Development of indium tin oxide film texture during DC magnetron sputtering deposition. <i>Journal of Crystal Growth</i> , 2003 , 259, 343-351 Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film. <i>Thin Solid Films</i> , 2003 , 445, 63-71	2.2	188
4	oxide thin film. <i>Thin Solid Films</i> , 2003 , 445, 63-71 Effects of thermal treatment on the electrical and optical properties of silver-based indium tin		100
2		2.2	ממ
2	oxide/metal/indium tin oxide structures. <i>Thin Solid Films</i> , 2003 , 440, 278-284 Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition. <i>Applied Surface Science</i> , 2002 , 193, 129-137	6.7	29