

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6084800/publications.pdf

Version: 2024-02-01

A SECA

#	Article	IF	CITATIONS
1	Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. International Journal of Molecular Sciences, 2018, 19, 263.	1.8	440
2	The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. Journal of Ethnopharmacology, 2014, 154, 286-310.	2.0	164
3	Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules, 2019, 24, 4182.	1.7	164
4	Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods. Marine Drugs, 2015, 13, 6838-6865.	2.2	133
5	Structural Characterization of the Lignin from the Nodes and Internodes ofArundo donaxReed. Journal of Agricultural and Food Chemistry, 2000, 48, 817-824.	2.4	85
6	Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Marine Drugs, 2020, 18, 8.	2.2	82
7	Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Marine Drugs, 2018, 16, 237.	2.2	73
8	Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. Applied Sciences (Switzerland), 2020, 10, 3001.	1.3	70
9	Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity. Marine Drugs, 2018, 16, 410.	2.2	66
10	Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules, 2019, 9, 337.	1.8	64
11	Phenolic constituents from the core of Kenaf (Hibiscus cannabinus). Phytochemistry, 2001, 56, 759-767.	1.4	62
12	Biological Potential and Medical Use of Secondary Metabolites. Medicines (Basel, Switzerland), 2019, 6, 66.	0.7	62
13	Chemical composition and structural features of the macromolecular components of Hibiscus cannabinus grown in Portugal. Industrial Crops and Products, 1996, 5, 189-196.	2.5	61
14	Variations in chemical composition and structure of macromolecular components in different morphological regions and maturity stages of Arundo donax. Industrial Crops and Products, 1997, 6, 51-58.	2.5	61
15	Lignanamides and other phenolic constituents from the bark of kenaf (Hibiscus cannabinus). Phytochemistry, 2001, 58, 1219-1223.	1.4	57
16	Lipophilic profile of the edible halophyte Salicornia ramosissima. Food Chemistry, 2014, 165, 330-336.	4.2	51
17	Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods, 2021, 10, 65.	1.9	44
18	Inula L. Secondary Metabolites against Oxidative Stress-Related Human Diseases. Antioxidants, 2019, 8, 122.	2.2	43

A SECA

#	Article	IF	CITATIONS
19	Metabolomic Profile of the Genus <i>Inula</i> . Chemistry and Biodiversity, 2015, 12, 859-906.	1.0	36
20	Structural Characterization of the Bark and Core Lignins from Kenaf (Hibiscus cannabinus). Journal of Agricultural and Food Chemistry, 1998, 46, 3100-3108.	2.4	35
21	Isolation and Characterization of a Lignin-Like Polymer of the Cork of <i>Quercus suber </i> L Holzforschung, 1996, 50, 563-568.	0.9	34
22	Chemical composition of the light petroleum extract ofHibiscus cannabinus bark and core. Phytochemical Analysis, 2000, 11, 345-350.	1.2	34
23	Chalcone: A Valuable Scaffold Upgrading by Green Methods. ACS Sustainable Chemistry and Engineering, 2017, 5, 7467-7480.	3.2	31
24	Diterpene constituents of leaves from Juniperus brevifolia. Phytochemistry, 2008, 69, 498-505.	1.4	29
25	Targeting human pathogenic bacteria by siderophores: A proteomics review. Journal of Proteomics, 2016, 145, 153-166.	1.2	29
26	Di- and Sesquiterpenoids from Cystoseira Genus: Structure, Intra-molecular Transformations and Biological Activity. Mini-Reviews in Medicinal Chemistry, 2013, 13, 1150-1159.	1.1	28
27	Chalcones and Flavanones Bearing Hydroxyl and/or Methoxyl Groups: Synthesis and Biological Assessments. Applied Sciences (Switzerland), 2019, 9, 2846.	1.3	25
28	Aqueous and Ethanolic Plant Extracts as Bio-Insecticides—Establishing a Bridge between Raw Scientific Data and Practical Reality. Plants, 2021, 10, 920.	1.6	24
29	The Current Status of the Pharmaceutical Potential of Juniperus L. Metabolites. Medicines (Basel,) Tj ETQq1 1	0.784314 rg	gBT /Qverlock
30	Cytotoxic meroterpenoids from the macroalga Cystoseira abies-marina. Phytochemistry Letters, 2013, 6, 593-597.	0.6	22
31	A new natural spiro heterocyclic compound and the cytotoxic activity of the secondary metabolites from Juniperus brevifolia leaves. Fìtoterapìâ, 2011, 82, 225-229.	1.1	21
32	Xanthenedione Derivatives, New Promising Antioxidant and Acetylcholinesterase Inhibitor Agents. Molecules, 2014, 19, 8317-8333.	1.7	20
33	Cytotoxic Activity of Diterpenes and Extracts of <i>Juniperus brevifolia</i> . Planta Medica, 2008, 74, 751-753.	0.7	19
34	Pharmacological and Cosmeceutical Potential of Seaweed Beach-Casts of Macaronesia. Applied Sciences (Switzerland), 2020, 10, 5831.	1.3	19
35	Uncharted Source of Medicinal Products: The Case of the Hedychium Genus. Medicines (Basel,) Tj ETQq1 1 0.7	784314 rgB ⁻ 0.7	T /Overlock 10
36	Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica	1.8	18

Species. International Journal of Molecular Sciences, 2015, 16, 17160-17180.

1.818

A Seca

#	Article	IF	CITATIONS
37	Salicornia ramosissima: Secondary metabolites and protective effect against acute testicular toxicity. Arabian Journal of Chemistry, 2018, 11, 70-80.	2.3	16
38	Gas chromatography–mass spectrometry profile of four Calendula L. taxa : A comparative analysis. Industrial Crops and Products, 2017, 104, 91-98.	2.5	15
39	Cytotoxic activity of lignans from Hibiscus cannabinus. Fìtoterapìâ, 2007, 78, 385-387.	1.1	13
40	Parthenolide and Parthenolide-Like Sesquiterpene Lactones as Multiple Targets Drugs. Studies in Natural Products Chemistry, 2017, 52, 337-372.	0.8	12
41	Comparative study by GC-MS and chemometrics on the chemical and nutritional profile of Fucus spiralis L. juvenile and mature life-cycle phases. Journal of Applied Phycology, 2018, 30, 2539-2548.	1.5	11
42	GC- and UHPLC-MS Profiles as a Tool to Valorize the Red Alga Asparagopsis armata. Applied Sciences (Switzerland), 2022, 12, 892.	1.3	10
43	Pharmacological effects of <i>Fucus spiralis</i> extracts and phycochemicals: a comprehensive review. Botanica Marina, 2019, 62, 167-178.	0.6	9
44	The chemical composition of hexane extract from bark of <i>Juniperus brevifolia</i> . Natural Product Research, 2008, 22, 975-983.	1.0	8
45	A Green and Simple Protocol for Extraction and Application of a Peroxidase-Rich Enzymatic Extract. Methods and Protocols, 2020, 3, 25.	0.9	8
46	Basic density and pulp yield relationship with some chemical parameters in eucalyptus trees. Pesquisa Agropecuaria Brasileira, 2006, 41, 1687-1691.	0.9	7
47	Asparagopsis Genus: What We Really Know About Its Biological Activities and Chemical Composition. Molecules, 2022, 27, 1787.	1.7	7
48	A new 4′,7-epoxy-8,3′-oxyneolignan from the acetone extract of Juniperus brevifolia leaves. Phytochemistry Letters, 2010, 3, 126-128.	0.6	6
49	Ethnobotanical Knowledge in Sete Cidades, Azores Archipelago: First Ethnomedicinal Report. Plants, 2019, 8, 256.	1.6	6
50	Structural Elucidation of Pimarane and Isopimarane Diterpenoids: The ¹³ C NMR Contribution. Natural Product Communications, 2008, 3, 1934578X0800300.	0.2	5
51	Saliramophenol, an unprecedented natural t-butylphenol derivative from Salicornia ramosissima J. Woods. RSC Advances, 2015, 5, 61380-61382.	1.7	5
52	Phytochemicals with Added Value from Morella and Myrica Species. Molecules, 2020, 25, 6052.	1.7	5
53	Chemical Study and Biological Activity Evaluation of Two Azorean Macroalgae: Ulva rigida and Gelidium microdon. Oceanography Open Access, 2013, 01, .	0.1	4
54	Natural Compounds: A Dynamic Field of Applications. Applied Sciences (Switzerland), 2020, 10, 4025.	1.3	4

A Seca

#	Article	IF	CITATIONS
55	A Novel Short-Step Synthesis of New Xanthenedione Derivatives from the Cyclization of 3-Cinnamoyl-2-styrylchromones. Synlett, 2011, 2011, 2005-2008.	1.0	2
56	Potential Anti-inflammatory Effects of Artemisia gorgonum on Rat Liver Injury Induced by CCl4 – ERRATUM. Microscopy and Microanalysis, 2016, , 1-2.	0.2	2
57	Potencial Anti-inflamatory Effects of Artemisia Gorgonum on Rat Liver Injury Induced by CCl4. Microscopy and Microanalysis, 2016, 22, 26-27.	0.2	2
58	Secondary Metabolites and Their Applications. Applied Sciences (Switzerland), 2022, 12, 2317.	1.3	2
59	Insight Approaches of Medicinal Plants for the Discovery of Anticancer Drugs. , 2017, , 105-151.		ο
60	Searching for Molecules against Cancer in the Azores: Plants, Macroalgae, and Synthetic Compounds. Proceedings (mdpi), 2019, 22, .	0.2	0
61	Secondary Metabolites in Edible Species: Looking beyond Nutritional Value. Foods, 2021, 10, 1131.	1.9	Ο
62	Xanthenedione derivatives, new promising acetylcholinesterase inhibitor agents. Planta Medica, 2014, 80, .	0.7	0