Yanyu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6083979/publications.pdf

Version: 2024-02-01

186265 206112 3,657 48 28 48 citations h-index g-index papers 48 48 48 3585 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Treated dentin matrix induces odontogenic differentiation of dental pulp stem cells via regulation of Wnt $\hat{\mathbb{C}}^2$ -catenin signaling. Bioactive Materials, 2022, 7, 85-97.	15.6	12
2	Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic. Carbohydrate Polymers, 2022, 276, 118753.	10.2	46
3	Magnetic polypropylene composites with selectively localized reactive nano-Fe3O4 in toughener of POE-g-MAH: Towards super toughness, high flexibility and balanced strength. Materials and Design, 2022, 217, 110607.	7.0	2
4	Multifunctional AgNW@MXene decorated polymeric textile for highly-efficient electro-/photothermal conversion and triboelectric nanogenerator. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106883.	7.6	21
5	<scp>Energyâ€Dissipative</scp> and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chinese Journal of Chemistry, 2022, 40, 2118-2134.	4.9	11
6	A Highly Mechanical, Conductive, and Cryophylactic Double Network Hydrogel for Flexible and Low-Temperature Tolerant Strain Sensors. Gels, 2022, 8, 424.	4.5	8
7	Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chemical Engineering Journal, 2021, 403, 126431.	12.7	215
8	Reactive Nano-Fe3O4 compatibilized magnetic super-tough PA1212/POE-g-MAH composites with a filler-network structure. Composites Science and Technology, 2021, 202, 108561.	7.8	7
9	Chitosan-Based High-Mechanical Double-Network Hydrogels: Construction, Modulation and Applications. Acta Chimica Sinica, 2021, 79, 1.	1.4	13
10	An efficient water-assisted liquid exfoliation of layered MXene (Ti3C2Tx) by rationally matching Hansen solubility parameter and surface tension. Journal of Molecular Liquids, 2021, 324, 115116.	4.9	9
11	Toward Largely Enhanced Toughness and Balanced Strength in PA1012/EPDM Blends via Synergistic Effect of Sacrificial Bonds and Network Structure. Macromolecular Materials and Engineering, 2021, 306, 2000813.	3.6	1
12	Improved mechanical properties of in situ microfibrillar polypropylene/polyamide6 composites through constructing strong interfacial adhesion. Polymers for Advanced Technologies, 2021, 32, 3343-3357.	3.2	5
13	A Robust Strategy for Precise Fabrication of Rigid–Flexible Coupling Dendrimers toward Self-Coordinated Hierarchical Assembly. CCS Chemistry, 2021, 3, 1093-1104.	7.8	11
14	Ultrathin Titanium Carbide (MXene) Films for Highâ€Temperature Thermal Camouflage. Advanced Functional Materials, 2021, 31, 2101381.	14.9	118
15	Ti ₃ C ₂ T _x MXene-Decorated Nanoporous Polyethylene Textile for Passive and Active Personal Precision Heating. ACS Nano, 2021, 15, 11396-11405.	14.6	141
16	A mechanically robust all-solid-state supercapacitor based on a highly conductive double-network hydrogel electrolyte and Ti ₃ C ₂ T _{<i>x</i>>} MXene electrode with anti-freezing property. Journal of Materials Chemistry A, 2021, 9, 25073-25085.	10.3	25
17	Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chemical Engineering Journal, 2020, 380, 122475.	12.7	426
18	A facile rheological approach for the evaluation of "super toughness point―of compatibilized HDPE / MWCNT nanocomposites. Polymer Testing, 2020, 81, 106280.	4.8	14

#	Article	IF	Citations
19	Highly toughened PA6 using residue of plasticized PVB film via two-step reactive melt blending. Polymer, 2020, 186, 122052.	3.8	18
20	Advance in Drug Delivery for Ageing Skeletal Muscle. Frontiers in Pharmacology, 2020, 11, 1016.	3.5	9
21	Current Trends of Targeted Drug Delivery for Oral Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 618931.	4.1	36
22	A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Journal of Materials Chemistry B, 2020, 8, 11010-11020.	5.8	66
23	Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25334-25344.	8.0	189
24	Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27350-27360.	8.0	157
25	Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. Journal of Materials Chemistry A, 2020, 8, 12526-12537.	10.3	203
26	Editorial: Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Frontiers in Chemistry, 2020, 8, 245.	3.6	31
27	Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomaterials Science, 2020, 8, 3138-3146.	5.4	44
28	Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Frontiers in Chemistry, 2020, 8, 53.	3.6	82
29	New application of MXene in polymer composites toward remarkable anti-dripping performance for flame retardancy. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105649.	7.6	60
30	A facile rheological approach for the determination of "super toughness point―of nylon1212/POE-g-MAH/MWCNT nanocomposites. Composites Science and Technology, 2019, 177, 73-80.	7.8	16
31	One-pot synthesis of bio-functionally water-soluble POSS derivatives via efficient click chemistry methodology. Reactive and Functional Polymers, 2019, 140, 103-110.	4.1	12
32	POSS-based supramolecular amphiphilic zwitterionic complexes for drug delivery. Biomaterials Science, 2019, 7, 1984-1994.	5.4	37
33	POSS-embedded supramolecular hyperbranched polymers constructed from a 1â†'7 branching monomer with controllable morphology transitions. Science China Chemistry, 2018, 61, 311-318.	8.2	24
34	Highly Elastic and Ultratough Hybrid Ionic–Covalent Hydrogels with Tunable Structures and Mechanics. Advanced Materials, 2018, 30, e1707071.	21.0	306
35	Dynamic and programmable morphology and size evolution via a living hierarchical self-assembly strategy. Nature Communications, 2018, 9, 2772.	12.8	67
36	pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging. Polymer, 2017, 118, 75-84.	3.8	31

#	Article	IF	CITATIONS
37	Fabrication of multi-stimuli responsive supramolecular hydrogels based on host–guest inclusion complexation of a tadpole-shaped cyclodextrin derivative with the azobenzene dimer. Polymer Chemistry, 2017, 8, 3901-3909.	3.9	60
38	Construction of Tough, in Situ Forming Double-Network Hydrogels with Good Biocompatibility. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2205-2212.	8.0	66
39	A Universal Soaking Strategy to Convert Composite Hydrogels into Extremely Tough and Rapidly Recoverable Doubleâ€Network Hydrogels. Advanced Materials, 2016, 28, 7178-7184.	21.0	492
40	Facile preparation of pH-responsive AlE-active POSS dendrimers for the detection of trivalent metal cations and acid gases. Polymer Chemistry, 2016, 7, 6432-6436.	3.9	28
41	Fabrication of pH-Responsive Nanoparticles with an AIE Feature for Imaging Intracellular Drug Delivery. Biomacromolecules, 2016, 17, 2920-2929.	5.4	111
42	Facile creation of FRET systems from a pH-responsive AIE fluorescent vesicle. Chemical Communications, 2016, 52, 5320-5323.	4.1	60
43	Facile Construction of pH- and Redox-Responsive Micelles from a Biodegradable Poly(\hat{l}^2 -hydroxyl amine) for Drug Delivery. Biomacromolecules, 2016, 17, 291-300.	5 . 4	86
44	Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12238-12248.	8.0	41
45	Synthesis, Self-Assembly, and Photoresponsive Behavior of Tadpole-Shaped Azobenzene Polymers. ACS Macro Letters, 2015, 4, 1321-1326.	4.8	49
46	Synthesis and self-assembly behavior of POSS-embedded hyperbranched polymers. Chemical Communications, 2015, 51, 8296-8299.	4.1	41
47	POSS dendrimers constructed from a 1 â†' 7 branching monomer. Chemical Communications, 2014, 50, 6126.	4.1	51
48	Bioreducible POSS-Cored Star-Shaped Polycation for Efficient Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1044-1052.	8.0	99