Wolfgang Sigmund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6083893/publications.pdf

Version: 2024-02-01

42 papers

4,218 citations

32 h-index 42 g-index

42 all docs 42 docs citations

times ranked

42

6726 citing authors

#	Article	IF	CITATIONS
1	Effect of Mn doping on particulate size and magnetic properties of LaFeO3 nanofiber synthesized by electrospinning. Journal of Alloys and Compounds, 2018, 749, 599-604.	5.5	37
2	Towards global sustainability: Education on environmentally clean energy technologies. Renewable and Sustainable Energy Reviews, 2018, 81, 2541-2551.	16.4	131
3	Self-Limitation of Native Oxides Explained. Silicon, 2016, 8, 339-343.	3.3	30
4	Towards sustainable energy. Generation of hydrogen fuel using nuclear energy. International Journal of Hydrogen Energy, 2016, 41, 12812-12825.	7.1	75
5	Platinum/zinc oxide nanoparticles: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceramics International, 2016, 42, 9375-9381.	4.8	99
6	Fluorine doped zinc oxide nanowires: Enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceramics International, 2016, 42, 4672-4678.	4.8	78
7	Cobalt/zinc oxide hollow spheres: Visible light nanophotocatalysts. Ceramics International, 2016, 42, 2299-2305.	4.8	18
8	Defect chemistry and defect engineering of TiO ₂ -based semiconductors for solar energy conversion. Chemical Society Reviews, 2015, 44, 8424-8442.	38.1	276
9	Electronic Property Dependence of Electrochemical Performance for TiO2/CNT Core-shell Nanofibers in Lithium Ion Batteries. Electrochimica Acta, 2015, 180, 295-306.	5.2	22
10	Role of the Surface Chemistry of Ceria Surfaces on Silicate Adsorption. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7388-7394.	8.0	44
11	Polyaniline/Polyoxometalate Hybrid Nanofibers as Cathode for Lithium Ion Batteries with Improved Lithium Storage Capacity. Journal of Physical Chemistry C, 2013, 117, 17376-17381.	3.1	86
12	Synthesis of LiNi Fe1â^'PO4 solid solution as cathode materials for lithium ion batteries. Electrochimica Acta, 2013, 108, 827-832.	5 . 2	45
13	Tin indium oxide/graphene nanosheet nanocomposite as an anode material for lithium ion batteries with enhanced lithium storage capacity and rate capability. Electrochimica Acta, 2013, 91, 275-281.	5.2	50
14	Silicon nanowires with a carbon nanofiber branch as lithium-ion anode material. Journal of Materials Chemistry, 2011, 21, 12619.	6.7	35
15	Biologically inspired hairy structures for superhydrophobicity. Materials Science and Engineering Reports, 2011, 72, 189-201.	31.8	65
16	Thermally Tunable Surface Wettability of Electrospun Fiber Mats: Polystyrene/Poly(<i>N</i> â€isopropylacrylamide) Blended versus Crosslinked Poly[(<i>N</i> â€isopropylacrylamide)â€ <i>co</i> â€(methacrylic acid)]. Macromolecular Rapid Communications, 2011, 32, 1716-1721.	3.9	32
17	Growth mechanism of single-crystal α-Al2O3 nanofibers fabricated by electrospinning techniques. Journal of the European Ceramic Society, 2011, 31, 723-731.	5.7	42
18	Electrospun Teflon AF fibers for superhydrophobic membranes. Journal of Materials Research, 2010, 25, 1595-1600.	2.6	23

#	Article	IF	CITATIONS
19	Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. Journal of Aerosol Science, 2010, 41, 230-236.	3.8	149
20	Microwave assisted nanofibrous air filtration for disinfection of bioaerosols. Journal of Aerosol Science, 2010, 41, 880-888.	3.8	52
21	Coaxially Electrospun PVDFâ^'Teflon AF and Teflon AFâ^'PVDF Coreâ^'Sheath Nanofiber Mats with Superhydrophobic Properties. Langmuir, 2010, 26, 12483-12487.	3.5	83
22	Photocatalytic Carbonâ€Nanotube–TiO ₂ Composites. Advanced Materials, 2009, 21, 2233-2239.	21.0	1,307
23	Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems. Journal of the American Ceramic Society, 2006, 89, 395-407.	3.8	394
24	Iron nanoparticles in carbon nanotubes at various temperatures. Journal of Crystal Growth, 2005, 276, 594-605.	1.5	46
25	Iron particles in carbon nanotubes. Carbon, 2005, 43, 1743-1748.	10.3	78
26	Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids and Surfaces B: Biointerfaces, 2005, 40, 93-98.	5.0	104
27	Magnetically Agitated Photocatalytic Reactor for Photocatalytic Oxidation of Aqueous Phase Organic Pollutants. Environmental Science & Environmental S	10.0	69
28	Adsorption Enhancement Mechanisms of Silicaâ^'Titania Nanocomposites for Elemental Mercury Vapor Removal. Environmental Science & Environmental Scienc	10.0	107
29	ZnO Nanocrystals Synthesized by Physical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2004, 4, 275-278.	0.9	13
30	Photoluminescence from amorphous silica nanowires synthesized using TiN/Ni/SiO2/Si and TiN/Ni/Si substrates. Solid State Communications, 2004, 131, 687-692.	1.9	23
31	Effect of a graphitic structure on the stability of FCC iron. Journal of Crystal Growth, 2004, 267, 738-744.	1.5	12
32	Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films. Chemical Physics Letters, 2004, 383, 380-384.	2.6	45
33	Nanostructured Silica-Gel Doped with TiO2 for Mercury Vapor Control. Journal of Nanoparticle Research, 2003, 5, 281-292.	1.9	55
34	Amorphous silica nanowires grown by the vapor–solid mechanism. Chemical Physics Letters, 2003, 376, 498-503.	2.6	40
35	Zinc sulfide nanocrystals on carbon nanotubes. Journal of Crystal Growth, 2003, 255, 114-118.	1.5	39
36	Control of growth orientation for carbon nanotubes. Applied Physics Letters, 2003, 82, 448-450.	3.3	69

#	Article	IF	CITATIONS
37	Zinc oxide nanowires on carbon nanotubes. Applied Physics Letters, 2002, 81, 2085-2087.	3.3	111
38	Temperature induced forming of zirconia from aqueous slurries: mechanism and rheology. Journal of the European Ceramic Society, 2002, 22, 2805-2812.	5.7	33
39	Morphological evolution of barium titanate synthesized in water in the presence of polymeric species. Journal of Materials Research, 1999, 14, 1844-1851.	2.6	21
40	Nanostructured Yttria Powders Via Gel Combustion. Journal of Materials Research, 1999, 14, 1524-1531.	2.6	63
41	Synthesis of YAG phase by a citrate–nitrate combustion technique. Materials Letters, 1999, 39, 138-141.	2.6	57
42	The function of polymers in the tape casting of alumina. Advanced Materials, 1992, 4, 73-81.	21.0	60