Steinar Grynning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6083387/publications.pdf

Version: 2024-02-01

430754 377752 1,407 37 18 34 citations h-index g-index papers 37 37 37 1151 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings. Energies, 2022, 15, 1314.	1.6	1
2	IEA EBC Annex83 Positive Energy Districts. Buildings, 2021, 11, 130.	1.4	55
3	Thermal mass and the effects on heating and cooling demands – an experimental study of an exposed concrete floor. E3S Web of Conferences, 2020, 172, 03004.	0.2	1
4	CFD Study of Diffuse Ceiling Ventilation through Perforated Ceiling Panels. Energies, 2020, 13, 1995.	1.6	7
5	Perceived Control in an Office Test Cell, a Case Study. Buildings, 2020, 10, 82.	1.4	3
6	Climate Adaptation in Maintenance Operation and Management of Buildings. Buildings, 2020, 10, 107.	1.4	10
7	Moisture robustness of eaves solutions for ventilated roofs: Experimental studies. Science and Technology for the Built Environment, 2019, 25, 1121-1131.	0.8	1
8	Thermal mass and thermal comfort in offices $\hat{a} \in \text{``experimental studies of a concrete floor. MATEC Web of Conferences, 2019, 282, 02087.}$	0.1	3
9	Thermal Performance of Insulated Constructions—Experimental Studies. Buildings, 2019, 9, 49.	1.4	11
10	Thermal conductivity of high-performance insulation - a laboratory study. Realistic design values for use in energy-efficient buildings. IOP Conference Series: Earth and Environmental Science, 2019, 352, 012046.	0.2	0
11	Efficiency of BIPV system – Field study in Norwegian climate. IOP Conference Series: Earth and Environmental Science, 2019, 352, 012033.	0.2	0
12	Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation. Building and Environment, 2019, 149, 446-457.	3.0	68
13	Automatic vs Manual Control Strategy for Window Blinds and Ceiling Lights: Consequences to Perceived Visual and Thermal Discomfort. Journal of Daylighting, 2019, 6, 112-123.	0.5	7
14	Optimized facade design - Energy efficiency, comfort and daylight in early design phase. Energy Procedia, 2017, 132, 484-489.	1.8	9
15	Balancing competing parameters in search of optimal configurations for a fix louvre blade system with integrated PV. Energy Procedia, 2017, 122, 607-612.	1.8	25
16	Climate Adaptation of School Buildings through MOM – A Case Study. Procedia Engineering, 2017, 196, 864-871.	1.2	2
17	Moisture robustness assessment of a window with integrated solar screen using numerical and experimental methods. Energy Procedia, 2017, 132, 381-386.	1.8	O
18	Advanced transparent facades: market available products and associated challenges in building performance simulation. Energy Procedia, 2017, 132, 496-501.	1.8	6

#	Article	IF	CITATIONS
19	Climate adaptation of buildings through MOM- and upgrading - State of the art and research needs. Energy Procedia, 2017, 132, 622-627.	1.8	10
20	Energy measurements at Skarpnes zero energy homes in Southern Norway: Do the loads match up with the on-site energy production?. Energy Procedia, 2017, 132, 567-573.	1.8	12
21	Solar Shading in Low Energy Office Buildings - Design Strategy and User Perception. Journal of Daylighting, 2017, 4, 1-14.	0.5	19
22	Perspective of aerogel glazings in energy efficient buildings. Building and Environment, 2016, 95, 405-413.	3.0	87
23	Dynamic Thermal Performance of a PCM Window System: Characterization Using Large Scale Measurements. Energy Procedia, 2015, 78, 85-90.	1.8	24
24	Aerogel granulate glazing facades and their application potential from an energy saving perspective. Applied Energy, 2015, 142, 179-191.	5.1	78
25	Thermal performance of in-between shading systems in multilayer glazing units: Hot-box measurements and numerical simulations. Journal of Building Physics, 2015, 39, 147-169.	1.2	6
26	Impact of convection on thermal performance of aerogel granulate glazing systems. Energy and Buildings, 2015, 88, 165-173.	3.1	45
27	Robustness classification of materials, assemblies and buildings. Journal of Building Physics, 2014, 37, 213-245.	1.2	21
28	Solar shading control strategies in cold climates $\hat{a}\in$ Heating, cooling demand and daylight availability in office spaces. Solar Energy, 2014, 107, 182-194.	2.9	90
29	Possibilities for characterization of a PCM window system using large scale measurements. International Journal of Sustainable Built Environment, 2013, 2, 56-64.	3.2	45
30	Windows in the buildings of tomorrow: Energy losers or energy gainers?. Energy and Buildings, 2013, 61, 185-192.	3.1	154
31	Moisture Robustness During Retrofitting of Timber Frame Walls with Vacuum Insulation Panels: Experimental and Theoretical Studies. Building Pathology and Rehabilitation, 2013, , 183-210.	0.1	3
32	Key elements of and material performance targets for highly insulating window frames. Energy and Buildings, 2011, 43, 2583-2594.	3.1	83
33	Aging effects on thermal properties and service life of vacuum insulation panels. Journal of Building Physics, 2011, 35, 128-167.	1.2	83
34	Improving thermal insulation of timber frame walls by retrofitting with vacuum insulation panels – experimental and theoretical investigations. Journal of Building Physics, 2011, 35, 168-188.	1.2	32
35	Hot box investigations and theoretical assessments of miscellaneous vacuum insulation panel configurations in building envelopes. Journal of Building Physics, 2011, 34, 297-324.	1.2	27
36	Vacuum insulation panels for building applications: A review and beyond. Energy and Buildings, 2010, 42, 147-172.	3.1	319

#	Article	IF	CITATIONS
37	Gas-filled panels for building applications: A state-of-the-art review. Energy and Buildings, 2010, 42, 1969-1975.	3.1	60