Joon-Young Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6083110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow-induced endothelial mitochondrial remodeling mitigates mitochondrial reactive oxygen species production and promotes mitochondrial DNA integrity in a p53-dependent manner. Redox Biology, 2022, 50, 102252.	3.9	11
2	Mitochondrial and Metabolic Adaptations to Exercise-Induced Fluid Shear Stress in Endothelial Cells. Exercise and Sport Sciences Reviews, 2022, 50, 145-155.	1.6	6
3	Healthy versus Unhealthy Adipose Tissue Expansion: the Role of Exercise. Journal of Obesity and Metabolic Syndrome, 2022, 31, 37-50.	1.5	8
4	Laminar Shear Stress Enhances Cytosolic PINK1 Expression: Increased Mitophagic Sensitivity Toward Mitochondrial Dysfunction. FASEB Journal, 2022, 36, .	0.2	0
5	A brief descriptive outline of the rules of mixed martial arts and concussion in mixed martial arts. Journal of Exercise Rehabilitation, 2022, 18, 142-154.	0.4	2
6	Laminar Shear Stress Protects Against Premature Endothelial Senescence by SIRT1-Dependent Mechanisms. Exercise Science, 2021, 30, 213-220.	0.1	1
7	Adaptive Immune Response Signaling Is Suppressed in Ly6Chigh Monocyte but Upregulated in Monocyte Subsets of ApoE-/- Mice — Functional Implication in Atherosclerosis. Frontiers in Immunology, 2021, 12, 809208.	2.2	2
8	Infusion of Plasma from Exercised Mice Ameliorates Cognitive Dysfunction by Increasing Hippocampal Neuroplasticity and Mitochondrial Functions in 3xTg-AD Mice. International Journal of Molecular Sciences, 2020, 21, 3291.	1.8	13
9	Exercise training ameliorates cerebrovascular dysfunction in a murine model of Alzheimer's disease: role of the P2Y2 receptor and endoplasmic reticulum stress. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1559-H1569.	1.5	13
10	Unlocking the Secrets of Mitochondria in the Cardiovascular System. Circulation, 2019, 140, 1205-1216.	1.6	91
11	Differential Cardiovascular and Mitochondrial Adaptations in Humanized P53 R72P Knock-In Mice. Medicine and Science in Sports and Exercise, 2019, 51, 654-654.	0.2	0
12	Effects of the senior welfare center exercise program on body shape, physical fitness level, and cardiovascular health-related factors in old man from Korean rural areas. Journal of Exercise Rehabilitation, 2019, 15, 282-286.	0.4	3
13	Effects of resveratrol on laminar shear stress-induced mitochondrial biogenesis in human vascular endothelial cells. Journal of Exercise Nutrition & Biochemistry, 2019, 23, 7-12.	1.3	4
14	Circulating Mitochondrial DNA Levels in Collegiate Football Players: A Pilot Study. FASEB Journal, 2019, 33, lb435.	0.2	0
15	Drp1 inhibitor mdiviâ€1 attenuates disturbed flowâ€induced metabolic shift and prevents cell activation in endothelial cells. FASEB Journal, 2019, 33, lb470.	0.2	0
16	Validation of Nanoparticle Tracking Analysis in Characterizing Extracellular Vesicle Isolated from Polydisperse Biological Samples. FASEB Journal, 2019, 33, lb599.	0.2	1
17	Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury. Antioxidants and Redox Signaling, 2018, 28, 973-986.	2.5	62
18	Quantitative Analysis of Mitochondrial Morphology Under Different Fluid Shear Stress Conditions. Medicine and Science in Sports and Exercise, 2018, 50, 32-33.	0.2	0

JOON-YOUNG PARK

#	Article	IF	CITATIONS
19	A cellular mechanism of muscle memory facilitates mitochondrial remodelling following resistance training. Journal of Physiology, 2018, 596, 4413-4426.	1.3	47
20	Effects of Physiological Oxygen Tension on In Vitro Fluid Shear Stress-Induced endothelial NO Synthase Activation. Medicine and Science in Sports and Exercise, 2016, 48, 689.	0.2	0
21	Abstract P343: Exercise-induces Mitochondrial Remodeling Prevents Angiotensin II-induced High Blood Pressure. Hypertension, 2016, 68, .	1.3	0
22	Cellular Mechanism of Muscle Memory. Medicine and Science in Sports and Exercise, 2015, 47, 101-102.	0.2	0
23	Effect of Interleukin-10 and Laminar Shear Stress on Endothelial Nitric Oxide Synthase and Nitric Oxide in African American Human Umbilical Vein Endothelial Cells. Ethnicity and Disease, 2015, 25, 413.	1.0	8
24	Role of Epidermal Growth Factor Receptor and Endoplasmic Reticulum Stress in Vascular Remodeling Induced by Angiotensin II. Hypertension, 2015, 65, 1349-1355.	1.3	82
25	Effects of In Vitro Laminar Shear Stress as an Exercise Mimetic on Endothelial Cell Health. Molecular and Translational Medicine, 2015, , 157-184.	0.4	0
26	Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H425-H433.	1.5	62
27	Effect of Interleukinâ€10 and Laminar Shear Stress on African American Human Umbilical Vein Endothelial Cells. FASEB Journal, 2015, 29, 994.4.	0.2	0
28	Effects of Voluntary Exercise Preconditioning on Ang IIâ€Induced Cardiovascular Pathophysiology in the Mouse. FASEB Journal, 2015, 29, LB581.	0.2	1
29	Exercise-Mediated Wall Shear Stress Increases Mitochondrial Biogenesis in Vascular Endothelium. PLoS ONE, 2014, 9, e111409.	1.1	52
30	Bioinformatic identification of connective tissue growth factor as an osteogenic protein within skeletal muscle. Physiological Reports, 2014, 2, e12255.	0.7	5
31	Bioinformatic Identification of CTGF as an Osteogenic Protein Expressed within Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2014, 46, 37.	0.2	0
32	Abstract 428: Shear Stress-Induced Mitochondrial Biogenesis: Implications for Salutary Effects of Aerobic Exercise on Endothelial Homeostasis. Hypertension, 2014, 64, .	1.3	0
33	Increased Oxidative Metabolism in the Li–Fraumeni Syndrome. New England Journal of Medicine, 2013, 368, 1027-1032.	13.9	112
34	Inhibition of Drp1-dependent mitochondrial division impairs myogenic differentiation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R927-R938.	0.9	82
35	Functional Study of Tumor Suppressor p53 Gene Variation: Effect on Cardiovascular Adaptation to Exercise Training. FASEB Journal, 2012, 26, 1138.5.	0.2	1
36	Combined Effect of Flowâ€Mediated Shear Stress and Resveratrol on Sirt1/PGCâ€1 α Pathway in Vascular Endothelial Cells FASEB Journal, 2012, 26, 1142.21.	0.2	0

JOON-YOUNG PARK

#	Article	IF	CITATIONS
37	Racial differences in tumor necrosis factor-α-induced endothelial microparticles and interleukin-6 production. Vascular Health and Risk Management, 2011, 7, 541.	1.0	46
38	Racial differences in the responses to shear stress in human umbilical vein endothelial cells. Vascular Health and Risk Management, 2011, 7, 425.	1.0	34
39	Effects of Laminar Shear Stress on Mitochondrial Biogenesis in Human Umbilical Vein Endothelial Cells. Medicine and Science in Sports and Exercise, 2011, 43, 464.	0.2	Ο
40	Endothelial Nitric Oxide Synthase Activation: Laminar Shear Stress vs. Low Oxidant Conditions. Medicine and Science in Sports and Exercise, 2011, 43, 464-465.	0.2	0
41	Translational Approach to Understanding Endothelial Adaptations to Exercise. Medicine and Science in Sports and Exercise, 2011, 43, 467.	0.2	0
42	Racial Differences in Oxidative Stress and Inflammation: <i>In Vitro</i> and <i>In Vivo</i> . Clinical and Translational Science, 2011, 4, 32-37.	1.5	112
43	eNOS Phosphorylation Under Flow-Mediated Shear Stress: Effects of Flow Pattern and Ambient Oxygen Concentration. Medicine and Science in Sports and Exercise, 2011, 43, 742-743.	0.2	0
44	Mitochondrial Fission Protein Drp1 Plays A Crucial Role For Myotube Differentiation By Regulating Mitochondria-mediated Apoptosis. Medicine and Science in Sports and Exercise, 2010, 42, 70-71.	0.2	0
45	Effects of aerobic exercise on the blood pressure, oxidative stress and eNOS gene polymorphism in pre-hypertensive older people. European Journal of Applied Physiology, 2010, 110, 825-832.	1.2	36
46	Differentiating racial differences in oxidative stress levels: in vitro and in vivo. FASEB Journal, 2010, 24, lb592.	0.2	0
47	Effects of Oxygen Tension in Shear Stress-Induced eNOS Activation in Human Endothelial Cells. Medicine and Science in Sports and Exercise, 2010, 42, 42-43.	0.2	0
48	p53 Improves Aerobic Exercise Capacity and Augments Skeletal Muscle Mitochondrial DNA Content. Circulation Research, 2009, 105, 705-712.	2.0	164
49	Plasma nitrate/nitrite levels are unchanged after long-term aerobic exercise training in older adults. Nitric Oxide - Biology and Chemistry, 2009, 21, 234-238.	1.2	11
50	Independent and combined influence ofAGTR1variants and aerobic exercise on oxidative stress in hypertensives. Blood Pressure, 2009, 18, 204-212.	0.7	3
51	Exercise Training, NADPH Oxidase p22phox Gene Polymorphisms, and Hypertension. Medicine and Science in Sports and Exercise, 2009, 41, 1421-1428.	0.2	35
52	Oxidative Stress Levels Are Reduced in Postmenopausal Women with Exercise Training Regardless of Hormone Replacement Therapy Status. Journal of Women and Aging, 2008, 20, 31-45.	0.5	15
53	Influence Of AGTR1 Gene Variants And Aerobic Exercise Training On Angiotensin II And Oxidative Stress. Medicine and Science in Sports and Exercise, 2008, 40, S44.	0.2	0
54	NFKB1 promoter variation implicates shear-induced NOS3 gene expression and endothelial function in prehypertensives and stage I hypertensives. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2320-H2327.	1.5	39

JOON-YOUNG PARK

#	Article	IF	CITATIONS
55	Differential aerobic exercise-induced changes in plasma aldosterone between African Americans and Caucasians. Experimental Physiology, 2007, 92, 871-879.	0.9	13
56	Changes in Reactive Hyperemia and Plasma Ox-LDL Levels with Aerobic Exercise Training are Inversely Related. Medicine and Science in Sports and Exercise, 2007, 39, S348.	0.2	0
57	NADPH oxidase p22phox gene variants are associated with systemic oxidative stress biomarker responses to exercise training. Journal of Applied Physiology, 2005, 99, 1905-1911.	1.2	46
58	Plasma nitrate/nitrite response to an oral glucose load and the effect of endurance training. Metabolism: Clinical and Experimental, 2004, 53, 673-679.	1.5	13