Tae-Il Son

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6083040/publications.pdf

Version: 2024-02-01

		567247	552766
55	834	15	26
papers	citations	h-index	g-index
57	57	57	1002
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preparation and reactions of (.etaallyl)palladium and -platinum carbonate complexes. Organometallics, 1992, 11, 171-176.	2.3	78
2	Visible light-induced crosslinkable gelatin. Acta Biomaterialia, 2010, 6, 4005-4010.	8.3	65
3	Polyelectrolyte complex hydrogel composed of chitosan and poly (\hat{l}^3 -glutamic acid) for biological application: Preparation, physical properties, and cytocompatibility. Journal of Applied Polymer Science, 2007, 103, 386-394.	2.6	54
4	Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment. Materials Science and Engineering C, 2012, 32, 2552-2561.	7.3	42
5	Palladium-Catalyzed Double-Carbonylation of Alkenyl Halides with Secondary Amines To Give α-Keto Amides. Bulletin of the Chemical Society of Japan, 1988, 61, 1251-1258.	3.2	39
6	Immobilization of Bone Morphogenetic Protein on DOPA- or Dopamine-Treated Titanium Surfaces to Enhance Osseointegration. BioMed Research International, 2013, 2013, 1-6.	1.9	33
7	Preparation of a visible light-reactive low molecular-O-carboxymethyl chitosan (LM-O-CMCS) derivative and applicability as an anti-adhesion agent. Macromolecular Research, 2011, 19, 921-927.	2.4	31
8	Preparation of Furfuryl-fish gelatin (F-f.gel) cured using visible-light and its application as an anti-adhesion agent. Macromolecular Research, 2012, 20, 842-846.	2.4	26
9	Preparation of photocured azidophenylâ€fish gelatin and its capturing of human epidermal growth factor on titanium plate. Journal of Applied Polymer Science, 2013, 127, 154-160.	2.6	22
10	Photo-reactive natural polymer derivatives for medical application. Journal of Industrial and Engineering Chemistry, 2017, 54, 1-13.	5 . 8	22
11	Prevention of surgical adhesions with barriers of carboxymethylcellulose and poly(ethylene glycol) hydrogels synthesized by irradiation. Journal of Applied Polymer Science, 2005, 96, 1138-1145.	2.6	21
12	An epidermal growth factor derivative with binding affinity for hydroxyapatite and titanium surfaces. Biomaterials, 2013, 34, 9747-9753.	11.4	21
13	Reinforcement of pHâ€responsive γâ€poly(glutamic acid)/chitosan hydrogel for orally administrable colonâ€targeted drug delivery. Journal of Applied Polymer Science, 2013, 127, 832-836.	2.6	19
14	Fabrication and characteristics of anti-inflammatory magnesium hydroxide incorporated PLGA scaffolds formed with various porogen materials. Macromolecular Research, 2014, 22, 210-218.	2.4	17
15	Regeneration effect of visible lightâ€curing furfuryl alginate compound by release of epidermal growth factor for wound healing application. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
16	Wound healing effect of visible light-curable chitosan with encapsulated EGF. Macromolecular Research, 2016, 24, 336-341.	2.4	16
17	Thermally crosslinked anionic hydrogels composed of poly(vinyl alcohol) and poly(γâ€glutamic acid): Preparation, characterization, and drug permeation behavior. Journal of Applied Polymer Science, 2008, 109, 3768-3775.	2.6	14
18	Synthesis of O-carboxylated low molecular chitosan with azido phenyl group: Its application for adhesion prevention. Macromolecular Research, 2010, 18, 1001-1007.	2.4	14

#	Article	IF	Citations
19	Photocurable O-carboxymethyl chitosan derivatives for biomedical applications: Synthesis, in vitro biocompatibility, and their wound healing effects. Macromolecular Research, 2012, 20, 1144-1149.	2.4	14
20	Visible light-induced photocurable (forming a film) low molecular weight chitosan derivatives for biomedical applications: Synthesis, characterization and in vitro biocompatibility. Journal of Industrial and Engineering Chemistry, 2012, 18, 1258-1262.	5.8	14
21	Biocompatible, drug-loaded anti-adhesion barrier using visible-light curable furfuryl gelatin derivative. International Journal of Biological Macromolecules, 2018, 120, 915-920.	7.5	13
22	Potent anti-adhesion agent using a drug-eluting visible-light curable hyaluronic acid derivative. Journal of Industrial and Engineering Chemistry, 2019, 70, 204-210.	5.8	13
23	Preparation of UV-curable gelatin derivatives for drug immobilization on polyurethane foam: Development of wound dressing foam. Macromolecular Research, 2015, 23, 994-1003.	2.4	12
24	BMP-2 immobilization by phosphonated UV-curable low-molecular-weight chitosan derivative on the surface of titanium. Journal of Industrial and Engineering Chemistry, 2016, 34, 33-40.	5.8	12
25	Visible and UV-curable chitosan derivatives for immobilization of biomolecules. International Journal of Biological Macromolecules, 2017, 104, 1611-1619.	7.5	12
26	PCL microspheres containing magnesium hydroxide for dermal filler with enhanced physicochemical and biological performances. Journal of Industrial and Engineering Chemistry, 2019, 80, 854-861.	5.8	12
27	Preparation of drug-immobilized anti-adhesion agent using visible light-curable alginate derivative containing furfuryl group. International Journal of Biological Macromolecules, 2019, 121, 301-308.	7.5	12
28	Coating of titanium plate by photocurable azidophenyl chitosan derivative for application to implants. Journal of Applied Polymer Science, 2013, 128, 4322-4326.	2.6	11
29	Preparation of photoreactive azidophenyl hyaluronic acid derivative: Protein immobilization for medical applications. Macromolecular Research, 2013, 21, 216-220.	2.4	10
30	Preparation and in vivo evaluation of photo-cured O-carboxymethyl chitosan micro-particle for controlled drug delivery. Macromolecular Research, 2014, 22, 541-548.	2.4	10
31	Photo-immobilization of bone morphogenetic protein-2 using azidophenyl gelatin on a collagen sheet enhances osteogenesis in a rat calvarial defect model. Journal of Industrial and Engineering Chemistry, 2016, 40, 177-184.	5.8	10
32	Surface-Modifying Effect of Zwitterionic Polyurethane Oligomers Complexed with Metal Ions on Blood Compatibility. Tissue Engineering and Regenerative Medicine, 2022, 19, 35-47.	3.7	10
33	Stabilization of epidermal growth factor on thermal and proteolytic degradation by conjugating with low molecular weight chitosan. Journal of Applied Polymer Science, 2006, 102, 5072-5082.	2.6	9
34	Synthesis of visible light-induced cross-linkable chitosan as an anti-adhesive agent. Macromolecular Research, 2011, 19, 216-220.	2.4	9
35	Anticancer effect of lipids partially purified from Pacific oyster, Crassostrea gigas on PC3 cells. Food Science and Biotechnology, 2010, 19, 213-217.	2.6	8
36	Enhancement of fibroblastic proliferation from photoreactive starch with immobilized epidermal growth factor. Journal of Applied Polymer Science, 2013, 129, 2161-2170.	2.6	8

#	Article	IF	CITATIONS
37	The immobilization of bone morphogenetic protein-2 via photo curable azidophenyl hyaluronic acid on a titanium surface and providing effect for cell differentiation. Macromolecular Research, 2014, 22, 173-178.	2.4	8
38	Preparation of phosphonated gelatin-coated titanium containing rhBMP-2 by UV irradiation for improved osteoinduction and function. Journal of Industrial and Engineering Chemistry, 2016, 36, 66-73.	5.8	7
39	Enhancement effect of cell adhesion on titanium surface using phosphonated low-molecular-weight chitosan derivative. Macromolecular Research, 2016, 24, 99-103.	2.4	7
40	Application of visible light curable furfuryl-low molecular chitosan derivative as an anti-adhesion agent. Journal of Industrial and Engineering Chemistry, 2018, 66, 438-445.	5.8	7
41	Fabrication and controlled release of electrosprayed ReoPro-loaded metal surface for vascular stent. Macromolecular Research, 2011, 19, 501-506.	2.4	6
42	Phosphorylated gelatin to enhance cell adhesion to titanium. Polymer International, 2014, 63, 1616-1619.	3.1	6
43	Preparation of UV-curable alginate derivatives for drug immobilization on dressing foam. Journal of Industrial and Engineering Chemistry, 2017, 54, 350-358.	5.8	6
44	Preparation of photoâ€reactive azidophenyl chitosan derivative for immobilization of growth factors. Journal of Applied Polymer Science, 2010, 117, 3029-3037.	2.6	5
45	Preparation of injectable forms of immobilized protein drugs using UV-curable gelatin derivatives. Journal of Industrial and Engineering Chemistry, 2019, 80, 877-885.	5.8	5
46	Anticancer effect of intracellular-delivered paclitaxel using novel pH-sensitive LMWSC-PCL di-block copolymer micelles. Journal of Industrial and Engineering Chemistry, 2019, 70, 136-144.	5.8	5
47	Osteogenic effectiveness of photo-immobilized bone morphogenetic protein-2 using different azidophenyl-natural polymer carriers in rat calvarial defect model. International Journal of Biological Macromolecules, 2019, 121, 333-341.	7.5	4
48	Injectable photoreactive azidophenyl hyaluronic acid hydrogels for tissue augmentation. Macromolecular Research, 2014, 22, 494-499.	2.4	3
49	Controllable mouse epidermal growth factor (mEGF) release by photo-encapsulation using azidophenyl chitosan derivative and its wound healing effect. Macromolecular Research, 2016, 24, 862-867.	2.4	3
50	Development of phosphonated alginate derivatives as coating material on titanium surface for medical application. Macromolecular Research, 2017, 25, 1192-1198.	2.4	3
51	Facile Surface Modification of Nitinol with Dopamine-Conjugated Hyaluronic Acid for Improving Blood Compatibility. Journal of Biomaterials and Tissue Engineering, 2016, 6, 780-787.	0.1	3
52	Antiadhesive Property of Photoreactive Azidophenyl Low-Molecular-Weight Chitosan in Rabbit Laminotomy Model. Journal of Chemistry, 2013, 2013, 1-8.	1.9	2
53	Preparation of azidophenyl-low molecular chitosan derivative micro particles for enhance drug delivery. International Journal of Biological Macromolecules, 2019, 133, 875-880.	7. 5	2
54	Immobilization effect of bone morphogenetic protein-2 on collagen membrane via photoreactive gelatin derivatives: Biocompatibility and preservability of osteoinductive activity. Macromolecular Research, 2015, 23, 525-530.	2.4	1

#	Article	lF	CITATIONS
55	Surface Modification Using Spiropyran-Derivative and Its Analysis of Surface Potential Induced by UV. Journal of the Korean Chemical Society, 2011, 55, 478-485.	0.2	O