Sreenivasan Sasidharan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6082849/sreenivasan-sasidharan-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,781 46 153 29 g-index h-index citations papers 160 3,238 2.9 5.21 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
153	Experimental and computational studies of fluorene derivatives containing two identical quinoline and pyridine moieties. <i>Journal of Molecular Structure</i> , 2022 , 1253, 132174	3.4	
152	Evaluation of Antiaging Activity in BY611 Yeast Cells Treated with Leaf Methanolic Extract (PLME) Using Different Microscopic Approaches: A Morphology-Based Evaluation <i>Microscopy and Microanalysis</i> , 2022 , 1-13	0.5	
151	In vitro antiaging activity of polyphenol rich Polyalthia longifolia (Annonaceae) leaf extract in Saccharomyces cerevisiae BY611 yeast cells <i>Journal of Ethnopharmacology</i> , 2022 , 290, 115110	5	3
150	Biology of aging: Oxidative stress and RNA oxidation Molecular Biology Reports, 2022, 1	2.8	2
149	Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line. <i>Plants</i> , 2022 , 11, 1280	4.5	1
148	Formulation and evaluation of wound healing activity of Elaeis guineensis Jacq leaves in a Staphylococcus aureus infected Sprague Dawley rat model. <i>Journal of Ethnopharmacology</i> , 2021 , 266, 113414	5	7
147	Antiaging activity of polyphenol rich Calophyllum inophyllum L. fruit extract in Saccharomyces cerevisiae BY611 yeast cells. <i>Food Bioscience</i> , 2021 , 42, 101208	4.9	2
146	Mitragynine Attenuates Morphine Withdrawal Effects in Rats-A Comparison With Methadone and Buprenorphine. <i>Frontiers in Psychiatry</i> , 2020 , 11, 411	5	21
145	Studies on In vitro Interaction of Ampicillin and Polyalthia longifolia Leaf Ethyl Acetate Fraction (PLEAF) by Checkerboard Method Against Methicillin Resistant Staphylococcus aureus (MRSA). <i>Current Bioactive Compounds</i> , 2020 , 16, 1049-1062	0.9	2
144	Synergistic Effect of Polyalthia longifolia Leaf and Antibiotics against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus (MRSA) by Microscopic Technique. <i>Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry</i> , 2020 , 19, 323-334	2	2
143	MicroRNA deregulation and cancer and medicinal plants as microRNA regulator. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2020 , 10, 47	1.4	1
142	Validation of target proteins of down-regulated miR-221-5p in HeLa cells treated with leaf extract using label-free quantitative proteomics approaches. <i>3 Biotech</i> , 2020 , 10, 399	2.8	О
141	Lactobacillus plantarum USM8613 Aids in Wound Healing and Suppresses Staphylococcus aureus Infection at Wound Sites. <i>Probiotics and Antimicrobial Proteins</i> , 2020 , 12, 125-137	5.5	25
140	Effects of Potential Probiotic Strains on the Fecal Microbiota and Metabolites of D-Galactose-Induced Aging Rats Fed with High-Fat Diet. <i>Probiotics and Antimicrobial Proteins</i> , 2020 , 12, 545-562	5.5	8
139	Functional analysis of down-regulated miRNA-221-5p in HeLa cell treated with polyphenol-rich as regulators of apoptotic HeLa cell death. <i>3 Biotech</i> , 2020 , 10, 206	2.8	2
138	Functional Validation of DownRegulated MicroRNAs in HeLa Cells Treated with Leaf Extract Using Different Microscopic Approaches: A Morphological Alteration-Based Validation. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1263-1272	0.5	5
137	Prediction of genes and protein-protein interaction networking for miR-221-5p using bioinformatics analysis. <i>Gene Reports</i> , 2019 , 16, 100426	1.4	1

(2017-2019)

136	Extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase attributed to the anti-staphylococcal activity of Lactobacillus plantarum USM8613. <i>Journal of Biotechnology</i> , 2019 , 300, 20-31	3.7	5
135	Synthesis, molecular structure and cytotoxic studies of fluorene compound with potential anti-cancer properties. <i>Journal of Molecular Structure</i> , 2019 , 1175, 763-768	3.4	4
134	Green Synthesis of Ag Nanoparticles and Their Performance towards Antimicrobial Properties 2019 , 48, 851-860		5
133	Antibacterial and Antifungal Agents of Higher Plants 2019 , 493-508		3
132	and anticandidal activities of alginate-enclosed chitosan-calcium phosphate-loaded Fe-bovine lactoferrin nanocapsules. <i>Future Science OA</i> , 2018 , 4, FSO257	2.7	3
131	Conventional and Non-conventional Approach towards the Extraction of Bioorganic Phase 2018 , 41-57		2
130	Genoprotection and Cytotoxicity of Cassia surattensis Seed Extract on Vero Cell Evaluated by Comet and Cytotoxicity Assays. <i>Proceedings of the National Academy of Sciences India Section B - Biological Sciences</i> , 2018 , 88, 313-320	1.4	4
129	In vitro-scientific evaluation on anti-Candida albicans activity, antioxidant properties and phytochemical constituents with the identification of antifungal active fraction from traditional medicinal plant Couroupita guianensis Aubl. Flower. <i>Journal of Complementary Medicine Research</i> ,	1.1	2
128	DR7 Reduces Cholesterol via Phosphorylation of AMPK That Down-regulated the mRNA Expression of HMG-CoA Reductase. <i>Korean Journal for Food Science of Animal Resources</i> , 2018 , 38, 350-361		18
127	MicroRNA profiling in MDA-MB-231 human breast cancer cell exposed to the Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) through Illumina Hi-Seq technologies and various in silico bioinformatics tools. <i>Journal of Ethnopharmacology</i> , 2018 , 213, 118-131	5	2
126	In vitro and in vivo toxicity assessment of alginate/eudragit S 100-enclosed chitosan-calcium phosphate-loaded iron saturated bovine lactoferrin nanocapsules (Fe-bLf NCs). <i>Biomedicine and Pharmacotherapy</i> , 2018 , 97, 26-37	7.5	10
125	Functional Analysis of Circular RNAs. Advances in Experimental Medicine and Biology, 2018, 1087, 95-105	3.6	9
124	In situ morphological assessment of apoptosis induced by Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) in MDA-MB-231 cells by microscopy observation. <i>Biomedicine and Pharmacotherapy</i> , 2017 , 87, 609-620	7.5	4
123	Broad spectrum targeting of tumor vasculature by medicinal plants: An updated review. <i>Journal of Herbal Medicine</i> , 2017 , 9, 1-13	2.3	10
122	Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. <i>Biomedicine and Pharmacotherapy</i> , 2017 , 89, 499-514	7.5	14
121	Phaleria macrocarpa (Boerl.) fruit induce G/G and G/M cell cycle arrest and apoptosis through mitochondria-mediated pathway in MDA-MB-231 human breast cancer cell. <i>Journal of Ethnopharmacology</i> , 2017 , 201, 42-55	5	16
120	Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods. <i>Biomedicine and Pharmacotherapy</i> , 2017 , 91, 366-377	7.5	11
119	Filamentary Conduction in Aloe Vera Film for Memory Application. <i>Procedia Engineering</i> , 2017 , 184, 655-	-662	15

118	Anticancer Activity and Molecular Mechanism of Polyphenol Rich Calophyllum inophyllum Fruit Extract in MCF-7 Breast Cancer Cells. <i>Nutrition and Cancer</i> , 2017 , 69, 1308-1324	2.8	4
117	Aloe vera in active and passive regions of electronic devices towards a sustainable development 2017 ,		3
116	Exploration of the anticandidal mechanism of Cassia spectabilis in debilitating candidiasis. <i>Journal of Traditional and Complementary Medicine</i> , 2016 , 6, 97-104	4.6	6
115	Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. <i>Pharmaceutical Biology</i> , 2016 , 54, 1223-36	3.8	41
114	Chemical Profiling and Antioxidant Activity of Thai Basil (Ocimum basilicum). <i>Journal of Essential Oil-bearing Plants: JEOP</i> , 2016 , 19, 750-755	1.7	2
113	Radioprotective activity of Polyalthia longifolia standardized extract against X-ray radiation injury in mice. <i>Physica Medica</i> , 2016 , 32, 150-61	2.7	19
112	Redox Control of Antioxidant and Antihepatotoxic Activities of Seed Extract against Paracetamol Intoxication in Mice: In Vitro and In Vivo Studies of Herbal Green Antioxidant. <i>Oxidative Medicine and Cellular Longevity</i> , 2016 , 2016, 6841348	6.7	3
111	Effects of Electrode Materials on Charge Conduction Mechanisms of Memory Device Based on Natural Aloe Vera. <i>MRS Advances</i> , 2016 , 1, 2513-2518	0.7	11
110	Effects of Calophyllum inophyllum fruit extract on the proliferation and morphological characteristics of human breast cancer cells MCF-7. <i>Asian Pacific Journal of Tropical Disease</i> , 2016 , 6, 29	1-297	5
109	Activity of crude and fractionated extracts by lactic acid bacteria (LAB) isolated from local dairy, meat, and fermented products against Staphylococcus aureus. <i>Annals of Microbiology</i> , 2015 , 65, 1037-1	0 47	5
108	Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. <i>Nanomedicine</i> , 2015 , 10, 35-55	5.6	54
107	Inhibition of Staphylococcus aureus by crude and fractionated extract from lactic acid bacteria. <i>Beneficial Microbes</i> , 2015 , 6, 129-39	4.9	13
106	Cissus quadrangularis inhibits IL-1 Induced inflammatory responses on chondrocytes and alleviates bone deterioration in osteotomized rats via p38 MAPK signaling. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 2927-40	4.4	13
105	Decreased expression of alpha-2-HS glycoprotein in the sera of rats treated with Eurycoma longifolia extract. <i>Frontiers in Pharmacology</i> , 2015 , 6, 211	5.6	2
104	Investigation of Aloe Vera as active layer for development of organic based memory devices. <i>Materials Technology</i> , 2015 , 30, A29-A35	2.1	15
103	MicroRNAs: association with radioresistant and potential uses of natural remedies as green gene therapeutic approaches. <i>Current Gene Therapy</i> , 2015 , 15, 15-20	4.3	3
102	Anti-Cancer Natural Products Inducing Cross-talk between Apoptosis and Autophagy Mutual Proteins to Regulate Cancer Cell Death: Design of Future Green Anticancer Therapies. <i>Asian Pacific Journal of Cancer Prevention</i> , 2015 , 16, 6175-6	1.7	4
101	Can Cancer Therapy be Achieved by Bridging Apoptosis and Autophagy: a Method Based on microRNA-Dependent Gene Therapy and Phytochemical Targets. <i>Asian Pacific Journal of Cancer Prevention</i> , 2015 , 16, 7435-9	1.7	5

(2013-2015)

Regulating Mitochondrial Biogenesis: from Herbal Remedies to Phytomedicine for Cancer Prevention. <i>Asian Pacific Journal of Cancer Prevention</i> , 2015 , 16, 8015	1.7	1
Deactivation of Telomerase Enzyme and Telomere Destabilization by Natural Products: a Potential Target for Cancer Green Therapy. <i>Asian Pacific Journal of Cancer Prevention</i> , 2015 , 16, 8671	1.7	
Effect of different types of vulcanization systems on the mechanical properties of natural rubber vulcanizates in the presence of oil palm leaves-based antioxidant. <i>Journal of Elastomers and Plastics</i> , 2014 , 46, 747-764	1.6	8
In vitro and in vivo antifungal activity of Cassia surattensis flower against Aspergillus niger. <i>Microbial Pathogenesis</i> , 2014 , 77, 7-12	3.8	9
Acute Oral Toxicity and Brine Shrimp Lethality of Methanol Extract of Mentha Spicata L (Lamiaceae). <i>Tropical Journal of Pharmaceutical Research</i> , 2014 , 13, 101	0.8	21
Evaluation of antinociceptive effect of methanolic leaf and root extracts of Clitoria ternatea Linn. in rats. <i>Indian Journal of Pharmacology</i> , 2014 , 46, 515-20	2.5	4
MicroRNA pathways: an emerging role in identification of therapeutic strategies. <i>Current Gene Therapy</i> , 2014 , 14, 112-20	4.3	6
MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis. <i>Asian Pacific Journal of Cancer Prevention</i> , 2014 , 15, 7489-97	1.7	42
Coaxing cancer pro-apoptoticity: an approach blending therapeutic miRNAs and dietary phytochemicals. <i>Asian Pacific Journal of Cancer Prevention</i> , 2014 , 15, 5499-500	1.7	
Natural pro-oxidants: an alternative remedy to explore as novel cancer therapeutic agents. <i>Asian Pacific Journal of Cancer Prevention</i> , 2014 , 15, 1501	1.7	
Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn.) flower against acetaminophen-induced liver damage. <i>Asian Pacific Journal of Tropical Disease</i> , 2013 , 3, 314-319		8
Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. <i>Drug Discovery Today</i> , 2013 , 18, 1292-300	8.8	48
Subchronic exposure to mitragynine, the principal alkaloid of Mitragyna speciosa, in rats. <i>Journal of Ethnopharmacology</i> , 2013 , 146, 815-23	5	46
Cytotoxicity and genotoxicity assessment of Euphorbia hirta in MCF-7 cell line model using comet assay. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2013 , 3, 692-6	1.4	20
Ultrastructural Study of Elaeis guineensis (Oil Palm) Leaf and Antimicrobial Activity of its Methanol Extract against Staphylococcus Aureus. <i>Tropical Journal of Pharmaceutical Research</i> , 2013 , 12, 419-423	0.8	5
Evaluation of the Genotoxic Potential against H2O2-Radical-Mediated DNA Damage and Acute Oral Toxicity of Standardized Extract of Polyalthia longifolia Leaf. <i>Evidence-based Complementary and Alternative Medicine</i> , 2013 , 2013, 925380	2.3	13
Acute and subchronic toxicity study of Euphorbia hirta L. methanol extract in rats. <i>BioMed Research International</i> , 2013 , 2013, 182064	3	62
Comparative Study on Effect of Natural and Synthetic Antioxidants on Curing Characteristic and Properties of Different Natural Rubber Origin Compounds. <i>Advanced Materials Research</i> , 2013 , 812, 93-	9 ⁹ .5	
	Prevention. Asian Pacific Journal of Cancer Prevention, 2015, 16, 8015 Deactivation of Telomerase Enzyme and Telomere Destabilization by Natural Products: a Potential Target for Cancer Green Therapy. Asian Pacific Journal of Cancer Prevention, 2015, 16, 8671 Effect of different types of vulcanization systems on the mechanical properties of natural rubber vulcanizates in the presence of oil palm leaves-based antioxidant. Journal of Elastomers and Plastics, 2014, 46, 747-764 Invitro and invivo antifungal activity of Cassia surattensis flower against Aspergillus niger. Microbial Pathogenesis, 2014, 77, 7-12 Acute Oral Toxicity and Brine Shrimp Lethality of Methanol Extract of Mentha Spicata L (Lamiaceae). Tropical Journal of Pharmaceutical Research, 2014, 13, 101 Evaluation of antinociceptive effect of methanolic leaf and root extracts of Clitoria ternatea Linn. in rats. Indian Journal of Pharmacology, 2014, 46, 515-20 MicroRNA pathways: an emerging role in identification of therapeutic strategies. Current Gene Therapy, 2014, 14, 112-20 MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis. Asian Pacific Journal of Cancer Prevention, 2014, 15, 7489-97 Coaxing cancer pro-apoptoticity: an approach blending therapeutic miRNAs and dietary phytochemicals. Asian Pacific Journal of Cancer Prevention, 2014, 15, 5499-500 Natural pro-oxidants: an alternative remedy to explore as novel cancer therapeutic agents. Asian Pacific Journal of Cancer Prevention, 2014, 15, 1501 Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn.) flower against acetaminophen-induced liver damage. Asian Pacific Journal of Tropical Disease, 2013, 3, 314-319 Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discovery Today, 2013, 18, 1292-300 Subchronic exposure to mitragynine, the principal alkaloid of Mitragyna speciosa, in rats. Journal of Ethnopharmacology, 2013, 146,	Prevention. Asian Pacific Journal of Cancer Prevention, 2015, 16, 8015 Deactivation of Telomerase Enzyme and Telomere Destabilization by Natural Products: a Potential Target for Cancer Green Therapy. Asian Pacific Journal of Cancer Prevention, 2015, 16, 8671 Effect of different types of vulcanization systems on the mechanical properties of natural rubber vulcanizates in the presence of oil palm leaves-based antioxidant. Journal of Elastomers and Plastics , 2014, 46, 747-764 Infyitro and Infyivo antifungal activity of Cassia surattensis flower against Aspergillus niger. Acute Oral Toxicity and Brine Shrimp Lethality of Methanol Extract of Mentha Spicata L (Lamiaceae). Tropical Journal of Pharmaceutical Research, 2014, 13, 101 Evaluation of antinociceptive effect of methanolic leaf and root extracts of Clitoria ternatea Linn. in rats. Indian Journal of Pharmacology, 2014, 46, 515-20 MicroRNA pathways: an emerging role in identification of therapeutic strategies. Current Gene Therapy, 2014, 14, 112-20 MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis. Asian Pacific Journal of Cancer Prevention, 2014, 15, 7489-97 Coaxing cancer pro-apoptoticity: an approach blending therapeutic miRNAs and dietary phytochemicals. Asian Pacific Journal of Cancer Prevention, 2014, 15, 5499-500 Natural pro-oxidants: an alternative remedy to explore as novel cancer therapeutic agents. Asian Pacific Journal of Cancer Prevention, 2014, 15, 1591 Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn.) flower against acetaminophen-induced liver damage. Asian Pacific Journal of Tropical Disease, 2013, 3, 314-319 Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discovery Today, 2013, 18, 1292-300 Subchronic exposure to mitragynine, the principal alkaloid of Mitragyna speciosa, in rats. Journal of Ethnopharmacology, 2013, 146, 815-23 Subchronic exposure to mitr

82	Biodegradation Studies of Attapulgite Clay Filled Polyvinyl Alcohol/Modified Corn Starch Blend Films: Microbial and Enzymatic. <i>Advanced Materials Research</i> , 2013 , 747, 668-672	0.5	
81	Effects of Natural Rubber Origin on Mechanical Properties of Rubber Compound in the Presence of Natural and Commercial Antioxidants. <i>Advanced Materials Research</i> , 2013 , 747, 703-706	0.5	2
80	Comparative Study on Natural and Synthetic Antioxidants on Thermo-Oxidative Aging of Natural and Synthetic Rubber Vulcanizates. <i>Advanced Materials Research</i> , 2013 , 844, 326-329	0.5	
79	Chromatographic and Spectral Fingerprinting of Polyalthia longifolia, a Source of Phytochemicals. <i>BioResources</i> , 2013 , 8,	1.3	5
78	Targeted multimodal liposomes for nano-delivery and imaging: an avenger for drug resistance and cancer. <i>Current Gene Therapy</i> , 2013 , 13, 322-34	4.3	7
77	Herbal remedies for combating irradiation: a green anti-irradiation approach. <i>Asian Pacific Journal of Cancer Prevention</i> , 2013 , 14, 5553-65	1.7	17
76	Evaluation of the effect of Cassia surattensis Burm. f., flower methanolic extract on the growth and morphology of Aspergillus niger. <i>European Review for Medical and Pharmacological Sciences</i> , 2013 , 17, 1648-54	2.9	3
75	Comparative study on natural antioxidant as an aging retardant for natural rubber vulcanizates. Journal of Applied Polymer Science, 2012 , 124, 1490-1500	2.9	33
74	Pharmacological screening of methanolic extract of Ixora species. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2012 , 2, 149-51	1.4	4
73	Antioxidant and antibacterial activity of different parts of Leucas aspera. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2012 , 2, 176-80	1.4	58
72	In vitro anti-Toxoplasma gondii activity of root extract/fractions of Eurycoma longifolia Jack. <i>BMC Complementary and Alternative Medicine</i> , 2012 , 12, 91	4.7	35
71	Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2012 , 2, 826-9	1.4	73
70	Prevalence of Helicobacter pylori infection among patients referred for endoscopy: Gender and ethnic differences in Kedah, Malaysia. <i>Asian Pacific Journal of Tropical Disease</i> , 2012 , 2, 55-59		8
69	Ethical issues in the prevention of H1N1: the Malaysian experience. <i>Asian Pacific Journal of Tropical Disease</i> , 2012 , 2, 502-504		
68	Antioxidant Activity of Elaeis guineensis Leaf Extract: An Alternative Nutraceutical Approach in Impeding Aging. <i>APCBEE Procedia</i> , 2012 , 2, 153-159		16
67	Isolation and Identification of Helicase from Anoxybacillus sp for DNA amplification. <i>APCBEE Procedia</i> , 2012 , 2, 160-164		
66	Isolation and Identification of Helicase from Escherichia coli for Biotechnology Processes. <i>APCBEE Procedia</i> , 2012 , 2, 165-169		
65	Antioxidant activity of methanol extracts of different parts of Lantana camara. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2012 , 2, 960-5	1.4	77

64	The Antimicrobial efficacy of Elaeis guineensis: characterization, in vitro and in vivo studies. <i>Molecules</i> , 2012 , 17, 4860-77	4.8	25
63	Evaluation of the hepatoprotective Effects of Lantadene A, a pentacyclic triterpenoid of Lantana plants against acetaminophen-induced liver damage. <i>Molecules</i> , 2012 , 17, 13937-47	4.8	7
62	Genotoxicity of Euphorbia hirta: an Allium cepa assay. <i>Molecules</i> , 2012 , 17, 7782-91	4.8	61
61	Real time anti-Toxoplasma gondii activity of an active fraction of Eurycoma longifolia root studied by in situ scanning and transmission electron microscopy. <i>Molecules</i> , 2012 , 17, 9207-19	4.8	5
60	Cassia spectabilis (DC) Irwin et Barn: a promising traditional herb in health improvement. <i>Molecules</i> , 2012 , 17, 10292-305	4.8	16
59	Effect of Natural Antioxidants on Curing Characteristics and Crosslink Density of Natural Rubber Vulcanisate. <i>Advanced Materials Research</i> , 2012 , 626, 366-371	0.5	4
58	Antioxidant Activity and Hepatoprotective Potential of Polyalthia longifolia and Cassia spectabilis Leaves against Paracetamol-Induced Liver Injury. <i>Evidence-based Complementary and Alternative Medicine</i> , 2012 , 2012, 561284	2.3	29
57	Wound healing activity of Elaeis guineensis leaf extract ointment. <i>International Journal of Molecular Sciences</i> , 2012 , 13, 336-47	6.3	32
56	In vitro antioxidant activity potential of lantadene A, a pentacyclic triterpenoid of Lantana plants. <i>Molecules</i> , 2012 , 17, 11185-98	4.8	20
55	Acute toxicity impacts of Euphorbia hirta L extract on behavior, organs body weight index and histopathology of organs of the mice and Artemia salina. <i>Pharmacognosy Research (discontinued)</i> , 2012 , 4, 170-7	0.7	26
54	In vitro, in situ and in vivo studies on the anticandidal activity of Cassia fistula seed extract. <i>Molecules</i> , 2012 , 17, 6997-7009	4.8	11
53	SU-E-T-231: Comparison of Beam Characteristics of Small Field 6 MeV Electrons as Replacement for Superficial X Ray Beam. <i>Medical Physics</i> , 2012 , 39, 3756	4.4	
52	Chemotherapy through a combination of fasting and chronopharmacology. <i>Asian Pacific Journal of Cancer Prevention</i> , 2012 , 13, 4847-8	1.7	
51	Anti-Candida activity and brine shrimp toxicity assay of Ganoderma boninense. <i>European Review for Medical and Pharmacological Sciences</i> , 2012 , 16, 43-8	2.9	15
50	Epidemiology of Helicobacter pylori among multiracial community in Northern Peninsular, Malaysia: effect of age across race and gender. <i>Asian Pacific Journal of Tropical Medicine</i> , 2011 , 4, 72-5	2.1	19
49	Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L. <i>Asian Pacific Journal of Tropical Medicine</i> , 2011 , 4, 386-90	2.1	90
48	Bioassay-directed isolation of active compounds with antiyeast activity from a Cassia fistula seed extract. <i>Molecules</i> , 2011 , 16, 7583-92	4.8	21
47	Antimicrobial drug resistance of Staphylococcus aureus in dairy products. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2011 , 1, 130-2	1.4	41

46	In vivo toxicity study of Lantana camara. Asian Pacific Journal of Tropical Biomedicine, 2011, 1, 230-2	1.4	21
45	Isolation and identification of salmonella from curry samples and its sensitivity to commercial antibiotics and aqueous extracts of Camelia sinensis (L.) and Trachyspermum ammi (L.). <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2011 , 1, 266-9	1.4	14
44	A transmission electron microscopy study of the diversity of Candida albicans cells induced by Euphorbia hirta L. leaf extract in vitro. <i>Asian Pacific Journal of Tropical Biomedicine</i> , 2011 , 1, 20-2	1.4	14
43	Cytotoxicity and oral acute toxicity studies of Lantana camara leaf extract. <i>Molecules</i> , 2011 , 16, 3663-74	4.8	23
42	Acute oral toxicity of methanolic seed extract of Cassia fistula in mice. <i>Molecules</i> , 2011 , 16, 5268-82	4.8	92
41	Hepatoprotective potential of Clitoria ternatea leaf extract against paracetamol induced damage in mice. <i>Molecules</i> , 2011 , 16, 10134-45	4.8	38
40	Antihyperglycaemic effects of ethanol extracts of Carica papaya and Pandanus amaryfollius leaf in streptozotocin-induced diabetic mice. <i>Natural Product Research</i> , 2011 , 25, 1982-7	2.3	42
39	Extraction, isolation and characterization of bioactive compounds from plants' extracts. <i>African Journal of Traditional Complementary and Alternative Medicines</i> , 2011 , 8, 1-10	0.2	216
38	Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans. <i>European Review for Medical and Pharmacological Sciences</i> , 2011 , 15, 543-9	2.9	11
37	Anti-Candida albicans biofilm activity by Cassia spectabilis standardized methanol extract: an ultrastructural study. <i>European Review for Medical and Pharmacological Sciences</i> , 2011 , 15, 875-82	2.9	7
36	In vitro and in situ antiyeast activity of Gracilaria changii methanol extract against Candida albicans. <i>European Review for Medical and Pharmacological Sciences</i> , 2011 , 15, 1020-6	2.9	1
35	Standardization of Elaeis guineensis with respect to authenticity, assay and chemical constituent analysis. <i>African Journal of Biotechnology</i> , 2010 , 9, 7544-7549	0.6	4
34	Acute oral toxicity and brine shrimp lethality of Elaeis guineensis Jacq., (oil palm leaf) methanol extract. <i>Molecules</i> , 2010 , 15, 8111-21	4.8	42
33	In vitro antioxidant activity and hepatoprotective effects of Lentinula edodes against paracetamol-induced hepatotoxicity. <i>Molecules</i> , 2010 , 15, 4478-89	4.8	34
32	Brine shrimp lethality and acute oral toxicity studies on Swietenia mahagoni (Linn.) Jacq. seed methanolic extract. <i>Pharmacognosy Research (discontinued)</i> , 2010 , 2, 215-20	0.7	28
31	Toxicity of Ganoderma boninense methanol extract in mice. <i>Mycology</i> , 2010 , 1, 85-91	3.7	1
30	Pharmacological activity, phytochemical analysis and toxicity of methanol extract of Etlingera elatior (torch ginger) flowers. <i>Asian Pacific Journal of Tropical Medicine</i> , 2010 , 3, 769-774	2.1	36
29	Toxicity study of Vernonia cinerea. <i>Pharmaceutical Biology</i> , 2010 , 48, 101-4	3.8	16

(2008-2010)

28	Antibacterial activity and morphological changes of Pseudomonas aeruginosa cells after exposure to Vernonia cinerea extract. <i>Ultrastructural Pathology</i> , 2010 , 34, 219-25	1.3	7
27	Antioxidant activity and total phenolic content of methanol extracts of Ixora coccinea. <i>Pharmaceutical Biology</i> , 2010 , 48, 1119-23	3.8	27
26	Wound healing potential of Elaeis guineensis Jacq leaves in an infected albino rat model. <i>Molecules</i> , 2010 , 15, 3186-99	4.8	54
25	Assessment of Euphorbia hirta L. leaf, flower, stem and root extracts for their antibacterial and antifungal activity and brine shrimp lethality. <i>Molecules</i> , 2010 , 15, 6008-18	4.8	45
24	Standardization of Cassia spectabilis with respect to authenticity, assay and chemical constituent analysis. <i>Molecules</i> , 2010 , 15, 3411-20	4.8	17
23	In vitro antimicrobial activity against Pseudomonas aeruginosa and acute oral toxicity of marine algae Gracilaria changii. <i>New Biotechnology</i> , 2010 , 27, 390-6	6.4	20
22	Antimicrobial Activity Evaluation of Cassia spectabilis Leaf Extracts. <i>International Journal of Pharmacology</i> , 2010 , 6, 510-514	0.7	26
21	Extraction, Isolation And Characterization Of Bioactive Compounds From Plants Extracts. <i>Tropical Journal of Obstetrics and Gynaecology</i> , 2010 , 8,	0.3	167
20	Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger. <i>Microscopy and Microanalysis</i> , 2009 , 15, 366-72	0.5	13
19	Development and evaluation of a new growth medium for Helicobacter pylori. <i>FEMS Immunology and Medical Microbiology</i> , 2009 , 56, 94-7		1
18	In situ TEM and SEM studies on the antimicrobial activity and prevention of Candida albicans biofilm by Cassia spectabilis extract. <i>Micron</i> , 2009 , 40, 439-43	2.3	54
17	Prevalence of Helicobacter pylori infection among asymptomatic healthy blood donors in Northern Peninsular Malaysia. <i>Transactions of the Royal Society of Tropical Medicine and Hygiene</i> , 2009 , 103, 395-8	2	15
16	In Vitro antioxidant and xanthine oxidase inhibitory activities of methanolic Swietenia mahagoni seed extracts. <i>Molecules</i> , 2009 , 14, 4476-85	4.8	42
15	Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae family) leaves. <i>Molecules</i> , 2009 , 14, 3964-74	4.8	60
14	Screening antimicrobial activity of various extracts of Gracilaria changii. <i>Pharmaceutical Biology</i> , 2009 , 47, 72-76	3.8	10
13	Antibody response to Helicobacter pylori excretory antigen and the cross reaction study. <i>Journal of Immunoassay and Immunochemistry</i> , 2009 , 30, 70-81	1.8	3
12	SU-FF-J-31: Quantitative Analysis of Prostate Motion Using Implanted Fiducial Markers Based On Port Film Image Guidance. <i>Medical Physics</i> , 2009 , 36, 2482-2482	4.4	
11	Fungicidal Effect and Oral Acute Toxicity of Psophocarpus tetragonolobus. Root Extract. <i>Pharmaceutical Biology</i> , 2008 , 46, 261-265	3.8	7

10	Antimicrobial activities of Psophocarpus tetragonolobus (L.) DC extracts. <i>Foodborne Pathogens and Disease</i> , 2008 , 5, 303-9	3.8	6
9	In Vivo. and In Vitro. Toxicity Study of Gracilaria changii <i>Pharmaceutical Biology</i> , 2008 , 46, 413-417	3.8	25
8	Fungicidal effect and oral acute toxicity of Cassia spectabilis leaf extract. <i>Medical Mycology Journal</i> , 2008 , 49, 299-304		17
7	Further evidence of ethnic and gender differences for Helicobacter pylori infection among endoscoped patients. <i>Transactions of the Royal Society of Tropical Medicine and Hygiene</i> , 2008 , 102, 122	6 ² 32	18
6	Preliminary isolation and in vitro antiyeast activity of active fraction from crude extract of Gracilaria changii. <i>Indian Journal of Pharmacology</i> , 2008 , 40, 227-9	2.5	3
5	Antibacterial Activity and Toxicity of Psophocarpus tetragonolobus <i>Pharmaceutical Biology</i> , 2007 , 45, 31-36	3.8	6
4	Antidiarrheal and antimicrobial activities of Stachytarpheta jamaicensis leaves. <i>Indian Journal of Pharmacology</i> , 2007 , 39, 245	2.5	3
3	Antimicrobial activities and toxicity of crude extract of the Psophocarpus tetragonolobus pods. <i>Tropical Journal of Obstetrics and Gynaecology</i> , 2006 , 4, 59-63	0.3	5
2	Interfraction Esophagus Motion Study in Image Guided Radiation Therapy (IGRT). <i>International Journal of Radiation Oncology Biology Physics</i> , 2005 , 63, S91-S92	4	8
1	SU-FF-T-147: Improved Calibration Method of EDR Films for IMRT-QA. <i>Medical Physics</i> , 2005 , 32, 1983-1	9.834	1