Sui-Jun Liu ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/6082802/publications.pdf Version: 2024-02-01 93792 139680 4,685 138 39 61 citations h-index g-index papers 140 140 140 3264 times ranked docs citations citing authors all docs | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 1 | Construction of novel cluster-based MOF as multifunctional platform for CO2 catalytic transformation and dye selective adsorption. Chinese Chemical Letters, 2023, 34, 107368. | 4.8 | 6 | | 2 | Blue-shifted and naked-eye recognition of H2PO4â^' and acetylacetone based on a luminescent metalâ^'organic framework with new topology and good stability. Chinese Chemical Letters, 2023, 34, 107532. | 4.8 | 19 | | 3 | Highly selective and turn-on fluorescence probe with red shift emission for naked-eye detecting Al3+ and Ga3+ based on metal-organic framework. Chinese Chemical Letters, 2022, 33, 541-546. | 4.8 | 65 | | 4 | Mononuclear copper(I) complexes bearing 1,3-bis(diphenylphosphino)propane and functional 6-Cyano-2,2′-bipyridine ligands. Journal of Molecular Structure, 2022, 1247, 131402. | 1.8 | 1 | | 5 | Luminescent Metal–Organic Framework-Based Fluorescence Turn-On and Red-Shift Sensor toward Al ³⁺ and Ga ³⁺ : Experimental Study and DFT Calculation. Crystal Growth and Design, 2022, 22, 277-284. | 1.4 | 23 | | 6 | A multi-responsive luminescent sensor based on a stable Eu(<scp>iii</scp>) metal–organic framework for sensing Fe ³⁺ , MnO ₄ ^{â^'} , and Cr ₂ O ₇ ^{2â^'} in aqueous solutions. CrystEngComm, 2022, 24, 1041-1048. | 1.3 | 20 | | 7 | A Three-Dimensional Porous Mn(II)-Metal–Organic Framework Based on a Caged Structure Showing
High Room-Temperature Proton Conductivity. Crystal Growth and Design, 2022, 22, 1045-1053. | 1.4 | 10 | | 8 | Stable bifunctional Zn ^{II} -based sensor toward acetylacetone and <scp>I</scp> -histidine <i>via</i> a fluorescence red shift and turn-on effect. CrystEngComm, 2022, 24, 1744-1751. | 1.3 | 10 | | 9 | Temperature- and solvent-induced reversible single-crystal-to-single-crystal transformations of Tb ^{III} -based MOFs with excellent stabilities and fluorescence sensing properties toward drug molecules. Inorganic Chemistry Frontiers, 2022, 9, 1504-1513. | 3.0 | 64 | | 10 | A Highly Efficient Luminescent Metal–Organic Framework with Strong Conjugate Unit for Sensing Small Molecules. Chinese Journal of Chemistry, 2022, 40, 1305-1312. | 2.6 | 24 | | 11 | Lanthanide-based metal–organic framework materials as bifunctional fluorescence sensors toward acetylacetone and aspartic acid. CrystEngComm, 2022, 24, 2464-2471. | 1.3 | 14 | | 12 | A tricolor-switchable stimuli-responsive luminescent binuclear Cu(<scp>i</scp>) complex with switchable NHâ<-O interactions. Inorganic Chemistry Frontiers, 2022, 9, 2305-2314. | 3.0 | 8 | | 13 | Gd(<scp>iii</scp>)-Based inorganic polymers, metal–organic frameworks and coordination polymers for magnetic refrigeration. CrystEngComm, 2022, 24, 2370-2382. | 1.3 | 18 | | 14 | Turn-on and blue-shift fluorescence sensor toward <scp>l</scp> -histidine based on stable Cd ^{ll} metal–organic framework with tetranuclear cluster units. Dalton Transactions, 2022, 51, 5983-5988. | 1.6 | 19 | | 15 | A Benzothiadiazole-Based Eu ³⁺ Metal–Organic Framework as the Turn-On Luminescent Sensor toward Al ³⁺ and Ga ³⁺ with Potential Bioimaging Application. Inorganic Chemistry, 2022, 61, 3607-3615. | 1.9 | 61 | | 16 | A Mechanochromic and Vapochromic Luminescent Cuprous Complex Based on a Switchable
Intramolecular π···π Interaction. Inorganic Chemistry, 2022, 61, 254-264. | 1.9 | 17 | | 17 | Stable Lanthanide Metal–Organic Frameworks with Ratiometric Fluorescence Sensing for Amino Acids and Tunable Proton Conduction and Magnetic Properties. Inorganic Chemistry, 2022, 61, 6819-6828. | 1.9 | 44 | | 18 | Two isostructural Ni(II)/Co(II)-based metal-organic frameworks for selective dye adsorption and catalytic cycloaddition of CO2 with epoxides. Chinese Chemical Letters, 2021, 32, 557-560. | 4.8 | 26 | | # | Article | IF | Citations | |----|--|-----|-----------| | 19 | Metal–organic framework derived porous nanostructured Co3O4 as high-performance anode materials for lithium-ion batteries. Journal of Materials Science, 2021, 56, 2451-2463. | 1.7 | 15 | | 20 | A novel Cd ^{II} -based metalâ€"organic framework as a multi-responsive luminescent sensor for Fe ³⁺ , MnO ₄ ^{â^'} , Cr ₂ O ₇ ^{2â^'} , salicylaldehyde and ethylenediamine detection with high selectivity and sensitivity. CrystEngComm, 2021, 23, 482-491. | 1.3 | 28 | | 21 | A new family of dinuclear lanthanide complexes exhibiting luminescence, magnetic entropy changes and single molecule magnet behaviors. CrystEngComm, 2021, 23, 645-652. | 1.3 | 7 | | 22 | Multifunctional ZnII–LnIII (Ln = Tb, Dy) complexes based on the amine-phenol ligand with field-induced slow magnetic relaxation, luminescence, and proton conduction. New Journal of Chemistry, 2021, 45, 3392-3399. | 1.4 | 3 | | 23 | A proton conductor showing an indication of single-ion magnet behavior based on a mononuclear Dy(<scp>iii</scp>) complex. Journal of Materials Chemistry C, 2021, 9, 481-488. | 2.7 | 21 | | 24 | A multifunctional benzothiadiazole-based fluorescence sensor for Al ³⁺ , Cr ³⁺ and Fe ³⁺ . CrystEngComm, 2021, 23, 1898-1905. | 1.3 | 36 | | 25 | A family of lanthanide metal–organic frameworks based on a redox-active tetrathiafulvalene-dicarboxylate ligand showing slow relaxation of magnetisation and electronic conductivity. Dalton Transactions, 2021, 50, 14714-14723. | 1.6 | 7 | | 26 | Two dinuclear GdIII clusters based on isobutyric acid and nicotinic acid with large magnetocaloric effects. Journal of Molecular Structure, 2021, 1227, 129689. | 1.8 | 3 | | 27 | Two benzothiadiazole-based compounds as multifunctional fluorescent sensors for detection of organic amines and anions. Polyhedron, 2021, 199, 115100. | 1.0 | 5 | | 28 | Rare Fluorescence Red-Shifted Metal–Organic Framework Sensor for Methylamine Derived from an N-Donor Ligand. Crystal Growth and Design, 2021, 21, 5765-5772. | 1.4 | 18 | | 29 | Recent advances in lanthanide coordination polymers and clusters with magnetocaloric effect or single-molecule magnet behavior. Dalton Transactions, 2021, 50, 15473-15487. | 1.6 | 24 | | 30 | A fluorescence red-shift and turn-on sensor for acetylacetone derived from Zn ^{II} -based metal–organic framework with new topology. CrystEngComm, 2021, 23, 2532-2537. | 1.3 | 21 | | 31 | Fluorescent sensors for aldehydes based on luminescent metal–organic frameworks. Dalton Transactions, 2021, 50, 7166-7175. | 1.6 | 26 | | 32 | Stable hydrogen-bonded organic frameworks for selective fluorescence detection of Al ³⁺ and Fe ³⁺ ions. CrystEngComm, 2021, 23, 8334-8342. | 1.3 | 4 | | 33 | Fe(OTf) ₃ â€Catalyzed Cyanation of Isochromene Acetals with Trimethylsilyl Cyanide. ChemistrySelect, 2021, 6, 11537-11540. | 0.7 | 4 | | 34 | A multi-responsive MOF-based fluorescent probe for detecting Fe ³⁺ ,
Cr ₂ O ₇ ^{2â^'} and acetylacetone. New Journal of Chemistry, 2021, 45, 22915-22923. | 1.4 | 6 | | 35 | Two Gd2 cluster complexes with monocarboxylate ligands displaying significant magnetic entropy changes. Journal of Molecular Structure, 2020, 1200, 127094. | 1.8 | 6 | | 36 | Mechanochromic luminescent materials of bimetallic Cu(<scp>i</scp>) complexes showing thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 16160-16167. | 2.7 | 28 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 37 | Multifunctional Zn(<scp>ii</scp>)–Yb(<scp>iii</scp>) complex enantiomers showing second-harmonic generation, near-infrared luminescence, single-molecule magnet behaviour and proton conduction. Journal of Materials Chemistry C, 2020, 8, 16032-16041. | 2.7 | 41 | | 38 | Reversible Mechanochromic Luminescence of Tetranuclear Cuprous Complexes. Inorganic Chemistry, 2020, 59, 17213-17223. | 1.9 | 29 | | 39 | Lanthanide Contraction in Action: Structural Variations in 13 Lanthanide(III) Thiophene-2,5-dicarboxylate Coordination Polymers (Ln = La–Lu, Except Pm and Tm) Featuring Magnetocaloric Effect, Slow Magnetic Relaxation, and Luminescence-Lifetime-based Thermometry. Crystal Growth and Design. 2020. 20. 6430-6452. | 1.4 | 41 | | 40 | Three Cd(II)-based luminescent metal-organic frameworks constructed from the mixed-ligand strategy for highly selective detection of nitrobenzene. Journal of Solid State Chemistry, 2020, 286, 121314. | 1.4 | 5 | | 41 | Turn-On Luminescent Sensor toward Fe ³⁺ , Cr ³⁺ , and Al ³⁺ Based on a Co(II) Metal–Organic Framework with Open Functional Sites. Inorganic Chemistry, 2020, 59, 2803-2810. | 1.9 | 183 | | 42 | Family of Chiral Zn ^{II} –Ln ^{III} (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amine–Phenol Ligand Showing Multifunctional Properties. Inorganic Chemistry, 2020, 59, 2811-2824. | 1.9 | 50 | | 43 | Two benzothiadiazole-based fluorescent sensors for selective detection of Cu2+ and OH– ions.
Polyhedron, 2019, 171, 523-529. | 1.0 | 25 | | 44 | A Cd ^{II} â€Based Metalâ€Organic Framework with <i>pcu</i> Topology as Turnâ€On Fluorescent Sensor for Al ³⁺ . Chemistry - an Asian Journal, 2019, 14, 3648-3654. | 1.7 | 58 | | 45 | Cd ^{II} â€Organic Frameworks Fabricated with a Nâ€Rich Ligand and Flexible Dicarboxylates:
Structural Diversity and Multiâ€Responsive Luminescent Sensing for Toxic Anions and Ethylenediamine.
Chemistry - an Asian Journal, 2019, 14, 4420-4428. | 1.7 | 31 | | 46 | A Sublimable Dinuclear Cuprous Complex Showing Selective Luminescence Vapochromism in the Crystalline State. Inorganic Chemistry, 2019, 58, 14478-14489. | 1.9 | 26 | | 47 | Magnetic, luminescence, topological and theoretical studies of structurally diverse supramolecular lanthanide coordination polymers with flexible glutaric acid as a linker. New Journal of Chemistry, 2019, 43, 14546-14564. | 1.4 | 29 | | 48 | Tb ^{III} /3d–Tb ^{III} clusters derived from a 1,4,7-triazacyclononane-based hexadentate ligand with field-induced slow magnetic relaxation and oxygen-sensitive luminescence. New Journal of Chemistry, 2019, 43, 4067-4074. | 1.4 | 15 | | 49 | In-situ synthesis of molecular magnetorefrigerant materials. Coordination Chemistry Reviews, 2019, 394, 39-52. | 9.5 | 166 | | 50 | A Series of Lanthanide-Based Metal–Organic Frameworks Derived from Furan-2,5-dicarboxylate and Glutarate: Structure-Corroborated Density Functional Theory Study, Magnetocaloric Effect, Ślow Relaxation of Magnetization, and Luminescent Properties. Inorganic Chemistry, 2019, 58, 7760-7774. | 1.9 | 68 | | 51 | Multifunctional Lanthanide Complexes Based on Tetraazacyclolamidophenol Ligand with Field-Induced Slow Magnetic Relaxation, Luminescent and SHG Properties. European Journal of Inorganic Chemistry, 2019, 2019, 1406-1412. | 1.0 | 8 | | 52 | Heterobimetallic copper($\langle scp \rangle i \langle scp \rangle$) complexes bearing both $1,1\hat{a}\in^2$ -bis(diphenylphosphino)ferrocene and functionalized 3-($2\hat{a}\in^2$ -pyridyl)-1,2,4-triazole. New Journal of Chemistry, 2019, 43, 4261-4271. | 1.4 | 12 | | 53 | A Zn ^{II} -Based Metal–Organic Framework with a Rare <i>tcj</i> Topology as a Turn-On Fluorescent Sensor for Acetylacetone. Inorganic Chemistry, 2019, 58, 3578-3581. | 1.9 | 256 | | 54 | Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Mikrochimica Acta, 2019, 186, 189. | 2.5 | 72 | | # | Article | IF | CITATIONS | |----|--|---------------------|-----------| | 55 | Two GdIII complexes with different structures and magnetocaloric properties induced by metal ion sources. New Journal of Chemistry, 2019, 43, 18445-18450. | 1.4 | 19 | | 56 | Temperature- and solvent-dependent structures of three zinc(II) metal-organic frameworks for nitroaromatic explosives detection. Journal of Solid State Chemistry, 2019, 269, 195-202. | 1.4 | 37 | | 57 | Chiral mononuclear Dy(III) complex based on pyrrolidine-dithiocarboxylate S-donors with field-induced single-ion magnet behavior. Inorganica Chimica Acta, 2018, 473, 145-151. | 1.2 | 7 | | 58 | Two chain-based TbIII/DyIII complexes derived from m-nitrobenzoic acid with totally different structures and magnetic properties. Journal of Molecular Structure, 2018, 1165, 326-331. | 1.8 | 31 | | 59 | Emissive mononuclear Cu(I) triphenylphosphine complexes with functionalized 6-tert-butoxycarbonyl-2,2′-bipyridine. Chemical Research in Chinese Universities, 2018, 34, 19-23. | 1.3 | 3 | | 60 | Ni(II)/Zn(II)-triazolate clusters based MOFs constructed from a V-shaped dicarboxylate ligand: Magnetic properties and phosphate sensing. Journal of Solid State Chemistry, 2018, 262, 100-105. | 1.4 | 22 | | 61 | Self-assembly of rare octanuclear quad(double-stranded) cluster helicates showing slow magnetic relaxation and the magnetocaloric effect. New Journal of Chemistry, 2018, 42, 17652-17658. | 1.4 | 15 | | 62 | Dicarboxylate-induced structural diversity of luminescent Zn ^{II} /Cd ^{II} coordination polymers derived from V-shaped bis-benzimidazole. CrystEngComm, 2018, 20, 5822-5832. | 1.3 | 49 | | 63 | Multivariant synthesis, crystal structures and properties of four nickel coordination polymers based on flexible ligands. CrystEngComm, 2018, 20, 5045-5055. | 1.3 | 14 | | 64 | Two magnetic Δ-chain-based Mn(<scp>ii</scp>) and Co(<scp>ii</scp>) coordination polymers with mixed carboxylate–phosphinate and μ ₃ -OH ^{â°'} bridges. CrystEngComm, 2017, 19, 1052-1 | 05 1 7.3 | 19 | | 65 | Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors. Current Applied Physics, 2017, 17, 427-432. | 1.1 | 9 | | 66 | Evolution from linear tetranuclear clusters into one-dimensional chains of Dy(<scp>iii</scp>) single-molecule magnets with an enhanced energy barrier. Inorganic Chemistry Frontiers, 2017, 4, 1149-1156. | 3.0 | 91 | | 67 | Construction and properties investigation of propeller type and three-fold interpenetration topology Mn(II) complexes. Inorganica Chimica Acta, 2017, 464, 94-98. | 1.2 | 6 | | 68 | 2 p -4 f MOFs based on naphthalene-1,4,5,8-tetracarboxylate with magnetocaloric effect and slow magnetic relaxation properties. Polyhedron, 2017, 132, 123-129. | 1.0 | 7 | | 69 | Mononuclear Dy(III) complex based on bipyridyl-tetrazolate ligand with field-induced single-ion magnet behavior and luminescent properties. Inorganic Chemistry Communication, 2017, 79, 41-45. | 1.8 | 10 | | 70 | Microwave hydrothermal method and photoluminescence properties of Gd 2 Sn 2 O 7 : Eu 3+ reddish orange phosphors. Journal of Luminescence, 2017, 183, 377-382. | 1.5 | 18 | | 71 | Diversified magnetic behaviors of new nickel(<scp>ii</scp>) and copper(<scp>ii</scp>) azido coordination polymers templated by diethyl or triethyl amines. New Journal of Chemistry, 2017, 41, 1212-1218. | 1.4 | 13 | | 72 | Temperature- and vapor-induced reversible single-crystal-to-single-crystal transformations of three 2D/3D Gd ^{III} â€"organic frameworks exhibiting significant magnetocaloric effects. Dalton Transactions, 2017, 46, 64-70. | 1.6 | 119 | | # | Article | IF | CITATIONS | |----|--|--------------------|------------------------| | 73 | 3d–4f heterometallic trinuclear complexes derived from amine-phenol tripodal ligands exhibiting magnetic and luminescent properties. Dalton Transactions, 2017, 46, 1153-1162. | 1.6 | 69 | | 74 | A highly stable and luminescent mononuclear Cu(I) bis-{5-tert-butyl-3-(6-methyl-2-pyridyl)-1 H -1,2,4-triazole} complex. Chinese Chemical Letters, 2017, 28, 1027-1030. | 4.8 | 6 | | 75 | Luminescent Three- and Four-Coordinate Dinuclear Copper(I) Complexes Triply Bridged by Bis(diphenylphosphino)methane and Functionalized 3-(2′-Pyridyl)-1,2,4-triazole Ligands. Inorganic Chemistry, 2017, 56, 10311-10324. | 1.9 | 36 | | 76 | PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Mikrochimica Acta, 2017, 184, 4141-4149. | 2.5 | 29 | | 77 | Synthesis, structure, and photophysics of copper($<$ scp $>$ i $<$ lscp $>$) triphenylphosphine complexes with functionalized 3-(2 â \in 2-pyrimidinyl)-1,2,4-triazole ligands. Dalton Transactions, 2017, 46, 13077-13087. | 1.6 | 30 | | 78 | Spin-Canted Antiferromagnetic Ordering in Transition Metal–Organic Frameworks Based on Tetranuclear Clusters with Mixed V- and Y-Shaped Ligands. Crystal Growth and Design, 2017, 17, 4757-4765. | 1.4 | 57 | | 79 | First observation of mutual energy transfer of Mn ⁴⁺ â€"Er ³⁺ via different excitation in Gd ₂ ZnTiO ₆ :Mn ⁴⁺ /Er ³⁺ phosphors. Journal of Materials Chemistry C, 2017, 5, 9098-9105. | 2.7 | 57 | | 80 | Three Gdâ€Based Metalâ€Organic Frameworks Constructed from Similar Dicarboxylate Ligands with Large Magnetic Entropy Changes. ChemistrySelect, 2017, 2, 10673-10677. | 0.7 | 25 | | 81 | Large magnetic entropy changes in three Gd ^{III} coordination polymers containing Gd ^{III} chains. New Journal of Chemistry, 2017, 41, 8598-8603. | 1.4 | 62 | | 82 | A family of 2D lanthanide complexes based on flexible thiodiacetic acid with magnetocaloric or ferromagnetic properties. Inorganica Chimica Acta, 2017, 455, 190-196. | 1.2 | 18 | | 83 | Two di- and trinuclear Gd(III) clusters derived from monocarboxylates exhibiting significant magnetic entropy changes. Polyhedron, 2017, 121, 180-184. | 1.0 | 22 | | 84 | Structural phase transitions, dielectric bistability and luminescence of two bulky ion-pair crystals $ [N(C < sub > 3 < / sub > H < sub > 7 < / sub >) < sub > 4 < / sub >] < sub > 2 < / sub > [Ln(NO < sub > 3 < / sub >) < sub > 5 < / sub >] (Ln =) To the control of the control of two bulky ion-pair crystals and the control of two bulky ion-pair crystals are in the control of two bulky in the control of two bulky is the control of two bulky in the control of two bulky is $ | j E T @q0 0 | O 11g BT /Overl | | 85 | Effects of substituents and phosphine auxiliaries on the structures of Cu(I) clusters with functionalized 2,2′-bipyridyl tetrazole ligands. Polyhedron, 2016, 112, 130-136. | 1.0 | 6 | | 86 | Synthesis, structures and magnetocaloric properties of two dinuclear GdIII clusters derived from monocarboxylate ligands. Polyhedron, 2016, 113, 96-101. | 1.0 | 37 | | 87 | Luminescent monometallic Cu(<scp>i</scp>) triphenylphosphine complexes based on methylated 5-trifluoromethyl-3-(2′-pyridyl)-1,2,4-triazole ligands. New Journal of Chemistry, 2016, 40, 5325-5332. | 1.4 | 20 | | 88 | Tricarboxylate-based Gd ^{III} coordination polymers exhibiting large magnetocaloric effects. Dalton Transactions, 2016, 45, 9209-9215. | 1.6 | 106 | | 89 | Emissive mononuclear Eu(III) and Tb(III) complexes bearing deprotonated 2,2′-bipyridyl-1,2,4-triazole terdentate ligands. Journal of Coordination Chemistry, 2016, 69, 2908-2919. | 0.8 | 6 | | 90 | Synthesis, structures and photophysical properties of copper(I) 2-(2-benzimidazolyl)-6-methylpyridine complexes with different diphosphine ligands. Polyhedron, 2016, 119, 525-531. | 1.0 | 6 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 91 | Luminescent mononuclear Eu(III) and Tb(III) complexes with bipyridyl-tetrazolate tridentate ligands. Polyhedron, 2016, 117, 388-393. | 1.0 | 9 | | 92 | High Proton Conduction in Two Co ^{II} and Mn ^{II} Anionic Metal–Organic Frameworks Derived from 1,3,5-Benzenetricarboxylic Acid. Crystal Growth and Design, 2016, 16, 6776-6780. | 1.4 | 73 | | 93 | Sol-gel method and luminescence properties of the ZrO2:Eu3+ phosphors with different charge compensation. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 120, 551-557. | 0.2 | 3 | | 94 | Cluster- and chain-based magnetic MOFs derived from 3d metal ions and 1,3,5-benzenetricarboxylate. New Journal of Chemistry, 2016, 40, 2680-2686. | 1.4 | 12 | | 95 | NaGd(WO ₄) ₂ :Yb ³⁺ /Er ³⁺ phosphors: hydrothermal synthesis, optical spectroscopy and green upconverted temperature sensing behavior. RSC Advances, 2016, 6, 35152-35159. | 1.7 | 44 | | 96 | Luminescent dinuclear copper(<scp>i</scp>) complexes bearing 1,4-bis(diphenylphosphino)butane and functionalized 3-(2′-pyridyl)pyrazole mixed ligands. Dalton Transactions, 2016, 45, 696-705. | 1.6 | 44 | | 97 | Co-precipitation synthesis and upconversion luminescence properties of ZrO2:Yb3+-Ho3+. Bulletin of Materials Science, 2015, 38, 1875-1879. | 0.8 | 4 | | 98 | Homochiral luminescent lanthanide dinuclear complexes derived from a chiral carboxylate. RSC Advances, 2015, 5, 98097-98104. | 1.7 | 7 | | 99 | Syntheses, structures and magnetic properties of Fe6 and Fe12 ferric wheels. Science China Chemistry, 2015, 58, 1853-1857. | 4.2 | 8 | | 100 | A family of nickel–lanthanide heterometallic dinuclear complexes derived from a chiral Schiff-base ligand exhibiting single-molecule magnet behaviors. Inorganica Chimica Acta, 2015, 435, 274-282. | 1.2 | 10 | | 101 | Two Gd ^{III} complexes derived from dicarboxylate ligands as cryogenic magnetorefrigerants. New Journal of Chemistry, 2015, 39, 6970-6975. | 1.4 | 52 | | 102 | Three-dimensional two-fold interpenetrated Cr ^{III} –Gd ^{III} heterometallic framework as an attractive cryogenic magnetorefrigerant. CrystEngComm, 2015, 17, 7270-7275. | 1.3 | 68 | | 103 | Topological modulation of metal–thiadiazole dicarboxylate coordination polymers through auxiliary ligand alteration. CrystEngComm, 2015, 17, 4301-4308. | 1.3 | 10 | | 104 | A heterometallic strategy to achieve a large magnetocaloric effect in polymeric 3d complexes. Chemical Communications, 2015, 51, 8288-8291. | 2.2 | 33 | | 105 | Synthesis and Magnetic Properties of a Series of Octanuclear [Fe ₆ Ln ₂] Nanoclusters. Crystal Growth and Design, 2015, 15, 2253-2259. | 1.4 | 60 | | 106 | Temperature-controlled polymorphism of chiral Cu ^{II} â€"Ln ^{III} dinuclear complexes exhibiting slow magnetic relaxation. Dalton Transactions, 2015, 44, 11191-11201. | 1.6 | 22 | | 107 | Two novel metal-organic frameworks based on linear dicarboxylic acid and 5-(4-pyridyl)tetrazole.
Journal of Solid State Chemistry, 2015, 232, 79-82. | 1.4 | 8 | | 108 | A series of cobalt and nickel clusters based on thiol-containing ligands accompanied by in situ ligand formation. Dalton Transactions, 2015, 44, 560-567. | 1.6 | 28 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 109 | Syntheses and structures of chiral tri- and tetranuclear Cd(II) clusters with luminescent and ferroelectric properties. Polyhedron, 2015, 85, 894-899. | 1.0 | 7 | | 110 | Hydro(solvo)thermal synthetic strategy towards azido/formato-mediated molecular magnetic materials. Coordination Chemistry Reviews, 2015, 289-290, 32-48. | 9.5 | 86 | | 111 | Lowâ€Dimensional Carboxylateâ€Bridged Gd ^{III} Complexes for Magnetic Refrigeration.
Chemistry - an Asian Journal, 2014, 9, 1116-1122. | 1.7 | 45 | | 112 | A Manganese(II) Coordination Polymer with the Ligands ÂAzide and Picolinate: Synthesis, Structure, and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1555-1558. | 0.6 | 2 | | 113 | A Spin-Canted Polynuclear Manganese Complex Comprised of Alternating Linkage of Cyclic Tetra-and Mononuclear Fragments. Crystal Growth and Design, 2014, 14, 2-5. | 1.4 | 30 | | 114 | Solvent-induced structural diversities from discrete cup-shaped Co ₈ clusters to Co ₈ cluster-based chains accompanied by in situ ligand conversion. CrystEngComm, 2014, 16, 753-756. | 1.3 | 33 | | 115 | Step-by-step synthesis of one Fe ₆ wheel and two Fe ₁₀ clusters derived from a multidentate triethanolamine ligand. CrystEngComm, 2014, 16, 5212-5215. | 1.3 | 15 | | 116 | Tuning the magnetic behaviors in [FellI12LnlII4] clusters with aromatic carboxylate ligands. Inorganic Chemistry Frontiers, 2014, 1, 200-206. | 3.0 | 35 | | 117 | Magnetocaloric effect and slow magnetic relaxation in two dense (3,12)-connected lanthanide complexes. Inorganic Chemistry Frontiers, 2014, 1, 549-552. | 3.0 | 89 | | 118 | A new Co-based metal–organic framework constructed from infinite sinusoidal-like rod-shaped secondary building units. Inorganic Chemistry Communication, 2014, 47, 67-70. | 1.8 | 4 | | 119 | Luminescent pillared LnIII–ZnII heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands. Journal of Solid State Chemistry, 2014, 212, 58-63. | 1.4 | 16 | | 120 | Doping cobalt into a [Zn ₇] cluster-based MOF to tune magnetic behaviour and induce fluorescence signal mutation. Dalton Transactions, 2014, 43, 11470-11473. | 1.6 | 27 | | 121 | Two lanthanide(III)–copper(II) chains based on [Cu2Ln2] clusters exhibiting high stability, magnetocaloric effect and slow magnetic relaxation. Chinese Chemical Letters, 2014, 25, 829-834. | 4.8 | 22 | | 122 | Large Magnetocaloric Effect in a Dense and Stable Inorganic–Organic Hybrid Cobridged by In Situ
Generated Sulfate and Oxalate. Chemistry - an Asian Journal, 2014, 9, 3116-3120. | 1.7 | 44 | | 123 | An Unprecedented Decanuclear Gd ^{III} Cluster for Magnetic Refrigeration. Inorganic Chemistry, 2013, 52, 9163-9165. | 1.9 | 95 | | 124 | [Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O: A 5-connected sqp topological metal–organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster. Chinese Chemical Letters, 2013, 24, 861-865. | 4.8 | 4 | | 125 | Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties. Journal of Solid State Chemistry, 2013, 204, 197-204. | 1.4 | 10 | | 126 | 3D Gd ^{III} Complex Containing Gd ₁₆ Macrocycles Exhibiting Large Magnetocaloric Effect. Crystal Growth and Design, 2013, 13, 4631-4634. | 1.4 | 68 | ## Sui-Jun Liu | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 127 | A new ditopic ratiometric receptor for detecting zinc and fluoride ions in living cells. Analyst, The, 2013, 138, 5486. | 1.7 | 51 | | 128 | Edge-directed assembly of a 3D 2p–3d heterometallic metal–organic framework based on a cubic Co8(TzDC)12 cage. CrystEngComm, 2013, 15, 9344. | 1.3 | 15 | | 129 | Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co ₂₄] macrocycles. Chemical Communications, 2013, 49, 871-873. | 2.2 | 72 | | 130 | Mn(ii) metal–organic frameworks based on Mn3 clusters: from 2D layer to 3D framework by the "pillaring―approach. CrystEngComm, 2013, 15, 1613. | 1.3 | 60 | | 131 | Slow Magnetic Relaxation in Two New 1D/0D Dy ^{III} Complexes with a Sterically Hindered Carboxylate Ligand. Inorganic Chemistry, 2013, 52, 2103-2109. | 1.9 | 99 | | 132 | Syntheses, structures and magnetic properties of three Co(II) coordination architectures based on a flexible multidentate carboxylate ligand and different N-donor ligands. Science China Chemistry, 2013, 56, 1693-1700. | 4.2 | 9 | | 133 | Two new CoII coordination polymers based on carboxylate-bridged di- and trinuclear clusters with a pyridinedicarboxylate ligand: synthesis, structures and magnetism. Dalton Transactions, 2012, 41, 6813. | 1.6 | 78 | | 134 | Fe ₂₀ Cluster Units Based Coordination Polymer from in Situ Ligand Conversion and Trapping of an Intermediate. Inorganic Chemistry, 2012, 51, 9571-9573. | 1.9 | 26 | | 135 | A Two-Fold Interpenetrated Coordination Framework with a Rare (3,6)-Connected loh1 Topology: Magnetic Properties and Photocatalytic Behavior. Crystal Growth and Design, 2012, 12, 5426-5431. | 1.4 | 125 | | 136 | Temperature-Dependent Structures of Lanthanide Metal–Organic Frameworks Based on Furan-2,5-Dicarboxylate and Oxalate. Crystal Growth and Design, 2012, 12, 3263-3270. | 1.4 | 76 | | 137 | Three new Cu(II)-Ln(III) heterometallic coordination polymers constructed from quinolinic acid and nicotinic acid: Synthesis, structures, and magnetic properties. Science China Chemistry, 2012, 55, 1064-1072. | 4.2 | 18 | | 138 | Reversible stimuli-responsive luminescence of bimetallic cuprous complexes based on NH-deprotonated 3-($2\hat{a}\in^2$ -pyridyl)pyrazole. Journal of Materials Chemistry C, 0, , . | 2.7 | 6 |