Marc Bramkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6082469/publications.pdf

Version: 2024-02-01

MARC RRAMKAMR

#	Article	IF	CITATIONS
1	Subcellular Dynamics of a Conserved Bacterial Polar Scaffold Protein. Genes, 2022, 13, 278.	2.4	12
2	CTP-controlled liquid–liquid phase separation of ParB. Journal of Molecular Biology, 2022, 434, 167401.	4.2	28
3	Fluidity is the way to life: lipid phase separation in bacterial membranes. EMBO Journal, 2022, 41, e110737.	7.8	5
4	A Bacterial Dynamin-Like Protein Confers a Novel Phage Resistance Strategy on the Population Level in Bacillus subtilis. MBio, 2022, 13, e0375321.	4.1	19
5	Elongation factor P is required for Ell Clc translation in Corynebacterium glutamicum due to an essential polyproline motif. Molecular Microbiology, 2021, 115, 320-331.	2.5	4
6	Dynamics of the Bacillus subtilis Min System. MBio, 2021, 12, .	4.1	12
7	FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis. Nature Communications, 2021, 12, 3310.	12.8	27
8	The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Molecular Cell, 2021, 81, 3992-4007.e10.	9.7	37
9	Single-cell growth inference of Corynebacterium glutamicum reveals asymptotically linear growth. ELife, 2021, 10, .	6.0	7
10	An Stomatin, Prohibitin, Flotillin, and HflK/C-Domain Protein Required to Link the Phage-Shock Protein to the Membrane in Bacillus subtilis. Frontiers in Microbiology, 2021, 12, 754924.	3.5	7
11	RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nature Communications, 2020, 11, 6067.	12.8	22
12	Chromosome organization by a conserved condensin-ParB system in the actinobacterium Corynebacterium glutamicum. Nature Communications, 2020, 11, 1485.	12.8	64
13	A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32086-32097.	7.1	16
14	Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement. ELife, 2020, 9, .	6.0	52
15	Chromosome Organization and Cell Growth of Corynebacterium glutamicum. Microbiology Monographs, 2020, , 3-24.	0.6	0
16	A gradientâ€forming MipZ protein mediating the control of cell division in the magnetotactic bacterium <i>MagnetospirillumÂgryphiswaldense</i> . Molecular Microbiology, 2019, 112, 1423-1439.	2.5	12
17	MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nature Microbiology, 2019, 4, 1978-1989.	13.3	58
18	Bacterial dynaminâ€like protein DynA mediates lipid and content mixing. FASEB Journal, 2019, 33, 11746-11757.	0.5	18

MARC BRAMKAMP

#	Article	IF	CITATIONS
19	The Polar Organizing Protein PopZ Is Fundamental for Proper Cell Division and Segregation of Cellular Content in <i>Magnetospirillum gryphiswaldense</i> . MBio, 2019, 10, .	4.1	16
20	Substrateâ€dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases. Molecular Microbiology, 2019, 111, 1335-1354.	2.5	8
21	Bacterial dynamin-like proteins reveal mechanism for membrane fusion. Nature Communications, 2018, 9, 3993.	12.8	5
22	Optimization of sample preparation and green color imaging using the mNeonGreen fluorescent protein in bacterial cells for photoactivated localization microscopy. Scientific Reports, 2018, 8, 10137.	3.3	13
23	The Antituberculosis Drug Ethambutol Selectively Blocks Apical Growth in CMN Group Bacteria. MBio, 2017, 8, .	4.1	27
24	Novel Chromosome Organization Pattern in <i>Actinomycetales</i> —Overlapping Replication Cycles Combined with Diploidy. MBio, 2017, 8, .	4.1	21
25	Sample Preparation and Choice of Fluorophores for Single and Dual Color Photo-Activated Localization Microscopy (PALM) with Bacterial Cells. Methods in Molecular Biology, 2017, 1563, 129-141.	0.9	14
26	Polymerization Dynamics of the Prophage-Encoded Actin-Like Protein AlpC Is Influenced by the DNA-Binding Adapter AlpA. Frontiers in Microbiology, 2017, 8, 1429.	3.5	1
27	A dynaminâ€like protein involved in bacterial cell membrane surveillance under environmental stress. Environmental Microbiology, 2016, 18, 2705-2720.	3.8	40
28	Impact of LytR-CpsA-Psr Proteins on Cell Wall Biosynthesis in Corynebacterium glutamicum. Journal of Bacteriology, 2016, 198, 3045-3059.	2.2	30
29	Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biology, 2016, 14, 88.	3.8	48
30	Evolution of dynamin: Modular design of a membrane remodeling machine (retrospective on DOI) Tj ETQq0 0 0	rgBT /Over 2.5	lock 10 Tf 50
31	Exploring the Existence of Lipid Rafts in Bacteria. Microbiology and Molecular Biology Reviews, 2015, 79, 81-100.	6.6	173
32	Following the equator: division site selection in Streptococcus pneumoniae. Trends in Microbiology, 2015, 23, 121-122.	7.7	9
33	A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Research, 2015, 43, 5002-5016.	14.5	31
34	Dissecting the Molecular Properties of Prokaryotic Flotillins. PLoS ONE, 2015, 10, e0116750.	2.5	23
35	Imaging DivIVA dynamics using photo-convertible and activatable fluorophores in Bacillus subtilis. Frontiers in Microbiology, 2014, 5, 59.	3.5	26
36	Cell division in Corynebacterineae. Frontiers in Microbiology, 2014, 5, 132.	3.5	61

Marc Bramkamp

#	Article	IF	CITATIONS
37	Interlinked Sister Chromosomes Arise in the Absence of Condensin during Fast Replication in B.Âsubtilis. Current Biology, 2014, 24, 293-298.	3.9	80
38	Interaction sites of DivIVA and RodA from Corynebacterium glutamicum. Frontiers in Microbiology, 2014, 5, 738.	3.5	28
39	The lipid <scp>II</scp> flippase <scp>RodA</scp> determines morphology and growth in <i><scp>C</scp>orynebacterium glutamicum</i> . Molecular Microbiology, 2013, 90, 966-982.	2.5	60
40	Flotillins functionally organize the bacterial membrane. Molecular Microbiology, 2013, 88, 1205-1217.	2.5	122
41	Protein-Protein Interaction Domains of Bacillus subtilis DivIVA. Journal of Bacteriology, 2013, 195, 1012-1021.	2.2	44
42	Chromosome Segregation Impacts on Cell Growth and Division Site Selection in Corynebacterium glutamicum. PLoS ONE, 2013, 8, e55078.	2.5	34
43	Identification of interaction partners of the dynamin-like protein DynA fromBacillus subtilis. Communicative and Integrative Biology, 2012, 5, 362-369.	1.4	9
44	Structure and function of bacterial dynamin-like proteins. Biological Chemistry, 2012, 393, 1203-1214.	2.5	58
45	A synthetic <i>Escherichia coli</i> system identifies a conserved origin tethering factor in Actinobacteria. Molecular Microbiology, 2012, 84, 105-116.	2.5	75
46	A bacterial dynaminâ€like protein mediating nucleotideâ€independent membrane fusion. Molecular Microbiology, 2011, 79, 1294-1304.	2.5	68
47	The putative Bacillus subtilis l,d-transpeptidase YciB is a lipoprotein that localizes to the cell poles in a divisome-dependent manner. Archives of Microbiology, 2010, 192, 57-68.	2.2	4
48	DivIC Stabilizes FtsL against RasP Cleavage. Journal of Bacteriology, 2010, 192, 5260-5263.	2.2	23
49	Subcellular Localization and Characterization of the ParAB System from <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2010, 192, 3441-3451.	2.2	86
50	The MinCDJ System in Bacillus subtilis Prevents Minicell Formation by Promoting Divisome Disassembly. PLoS ONE, 2010, 5, e9850.	2.5	59
51	Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology (United Kingdom), 2009, 155, 1786-1799.	1.8	92
52	Division site selection in rod-shaped bacteria. Current Opinion in Microbiology, 2009, 12, 683-688.	5.1	86
53	A novel component of the divisionâ€site selection system of <i>Bacillus subtilis</i> and a new mode of action for the division inhibitor MinCD. Molecular Microbiology, 2008, 70, 1556-1569.	2.5	157
54	Population Heterogeneity in <i>Corynebacterium glutamicum</i> ATCC 13032 Caused by Prophage CGP3. Journal of Bacteriology, 2008, 190, 5111-5119.	2.2	54

#	Article	IF	CITATIONS
55	Regulated intramembrane proteolysis of FtsL protein and the control of cell division inBacillus subtilis. Molecular Microbiology, 2006, 62, 580-591.	2.5	64
56	Genus-Specific Interactions of Bacterial Chromosome Segregation Machinery Are Critical for Their Function. Frontiers in Microbiology, 0, 13, .	3.5	2