Ping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6082429/publications.pdf Version: 2024-02-01

PINC WANC

#	Article	IF	CITATIONS
1	Cobalt nickel boride as an active electrocatalyst for water splitting. Journal of Materials Chemistry A, 2017, 5, 12379-12384.	5.2	214
2	Ammonia Borane Destabilized by Lithium Hydride: An Advanced Onâ€Board Hydrogen Storage Material. Advanced Materials, 2008, 20, 2756-2759.	11.1	183
3	Amorphous cobalt–boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. Journal of Power Sources, 2008, 177, 17-23.	4.0	181
4	Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Transactions, 2008, , 5400.	1.6	170
5	Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride. Journal of Alloys and Compounds, 2006, 414, 259-264.	2.8	167
6	Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. International Journal of Hydrogen Energy, 2010, 35, 3023-3028.	3.8	167
7	Microporous Metal–Organic Framework Constructed from Heptanuclear Zinc Carboxylate Secondary Building Units. Chemistry - A European Journal, 2006, 12, 3754-3758.	1.7	159
8	Lithiumâ€Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Advanced Functional Materials, 2009, 19, 265-271.	7.8	156
9	Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion. Acta Materialia, 2009, 57, 2250-2258.	3.8	154
10	Highly Dispersed Platinum on Honeycomb-like NiO@Ni Film as a Synergistic Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 8866-8872.	5.5	141
11	Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Materialia, 2008, 56, 6257-6263.	3.8	132
12	Metallic and Carbon Nanotube-Catalyzed Coupling of Hydrogenation in Magnesium. Journal of the American Chemical Society, 2007, 129, 15650-15654.	6.6	131
13	Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. Journal of Alloys and Compounds, 2006, 420, 278-282.	2.8	128
14	Reversible hydrogen storage in LiBH4 destabilized by milling with Al. Applied Physics A: Materials Science and Processing, 2007, 89, 963-966.	1.1	128
15	High-performance cobalt–tungsten–boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution. International Journal of Hydrogen Energy, 2008, 33, 4405-4412.	3.8	127
16	Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 5062-5069.	5.5	124
17	Effects of SWNT and Metallic Catalyst on Hydrogen Absorption/Desorption Performance of MgH2. Journal of Physical Chemistry B, 2005, 109, 22217-22221.	1.2	102
18	Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage: A density functional study. Chemical Physics Letters, 2008, 450, 318-321.	1.2	101

#	Article	IF	CITATIONS
19	Synthesis and Plasmonâ€Induced Chargeâ€Transfer Properties of Monodisperse Goldâ€Doped Titania Microspheres. Chemistry - A European Journal, 2009, 15, 4366-4372.	1.7	100
20	Hydrogen in mechanically prepared nanostructured h-BN: a critical comparison with that in nanostructured graphite. Applied Physics Letters, 2002, 80, 318-320.	1.5	99
21	A cost-effective NiMoB–La(OH)3 catalyst for hydrogen generation from decomposition of alkaline hydrous hydrazine solution. Journal of Materials Chemistry A, 2013, 1, 11623.	5.2	94
22	Promoted hydrogen generation from ammonia borane aqueous solution using cobalt–molybdenum–boron/nickel foam catalyst. Journal of Power Sources, 2010, 195, 307-312.	4.0	92
23	Hydrogen bubbles dynamic template preparation of a porous Fe–Co–B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 2010, 491, 359-365.	2.8	92
24	Preparation of Ti-Doped Sodium Aluminum Hydride from Mechanical Milling of NaH/Al with Off-the-Shelf Ti Powder. Journal of Physical Chemistry B, 2004, 108, 15827-15829.	1.2	89
25	In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. Applied Catalysis B: Environmental, 2019, 241, 292-298.	10.8	89
26	Study of cobalt boride-derived electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 6076-6087.	3.8	86
27	Exploration of the Nature of Active Ti Species in Metallic Ti-Doped NaAlH4. Journal of Physical Chemistry B, 2005, 109, 20131-20136.	1.2	84
28	Hydrogenation characteristics of Mg–TiO2 (rutile) composite. Journal of Alloys and Compounds, 2000, 313, 218-223.	2.8	83
29	Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate. Physical Chemistry Chemical Physics, 2007, 9, 1499-1502.	1.3	83
30	Hydrogen sorption kinetics of MgH2 catalyzed with NbF5. Journal of Alloys and Compounds, 2008, 453, 138-142.	2.8	82
31	Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. International Journal of Hydrogen Energy, 2010, 35, 3046-3050.	3.8	80
32	Pt-embedded in monolayer g-C ₃ N ₄ as a promising single-atom electrocatalyst for ammonia synthesis. Journal of Materials Chemistry A, 2019, 7, 11908-11914.	5.2	78
33	Ruthenium nanoparticles immobilized in montmorillonite used as catalyst for methanolysis of ammonia borane. International Journal of Hydrogen Energy, 2010, 35, 10317-10323.	3.8	77
34	Improved Hydrogen Storage of TiF3-Doped NaAlH4. ChemPhysChem, 2005, 6, 2488-2491.	1.0	74
35	Method for preparing Ti-doped NaAlH4 using Ti powder: observation of an unusual reversible dehydrogenation behavior. Journal of Alloys and Compounds, 2004, 379, 99-102.	2.8	70
36	Reaction of aluminium with alkaline sodium stannate solution as a controlled source of hydrogen. Energy and Environmental Science, 2011, 4, 2206.	15.6	70

#	Article	IF	CITATIONS
37	High-performance nickel–platinum nanocatalyst supported on mesoporous alumina for hydrogen generation from hydrous hydrazine. Journal of Power Sources, 2015, 273, 554-560.	4.0	70
38	Improved Reversible Dehydrogenation of Lithium Borohydride by Milling with As-Prepared Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 17023-17029.	1.5	69
39	Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage. Dalton Transactions, 2012, 41, 4296.	1.6	68
40	Improving hydrogen sorption kinetics of MgH2 by mechanical milling with TiF3. Journal of Alloys and Compounds, 2007, 432, L1-L4.	2.8	65
41	Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride: a new destabilizing approach. Physical Chemistry Chemical Physics, 2009, 11, 2507.	1.3	65
42	Improved hydrogen storage performance of Li–Mg–N–H materials by optimizing composition and adding single-walled carbon nanotubes. International Journal of Hydrogen Energy, 2007, 32, 1262-1268.	3.8	58
43	Improved hydrogen storage property of Li–Mg–B–H system by milling with titanium trifluoride. Energy and Environmental Science, 2009, 2, 120-123.	15.6	58
44	Structure and hydrogen storage property of ball-milled LiNH2/MgH2LiNH2/MgH2 mixture. International Journal of Hydrogen Energy, 2006, 31, 1236-1240.	3.8	57
45	Enhanced hydrogen storage properties of MgH2 co-catalyzed with NbF5 and single-walled carbon nanotubes. Scripta Materialia, 2007, 56, 765-768.	2.6	57
46	Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2 mixture associated with the in situ formation of dual-cation borohydride. Journal of Alloys and Compounds, 2010, 491, L1-L4.	2.8	57
47	Combined Effects of Functional Cation and Anion on the Reversible Dehydrogenation of LiBH ₄ . Journal of Physical Chemistry C, 2011, 115, 11839-11845.	1.5	52
48	Combined formation and decomposition of dual-metal amidoborane NaMg(NH2BH3)3for high-performance hydrogen storage. Dalton Transactions, 2011, 40, 3799-3801.	1.6	52
49	Co ₂ N/Co ₂ Mo ₃ O ₈ Heterostructure as a Highly Active Electrocatalyst for an Alkaline Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 8337-8343.	4.0	50
50	Improved hydrogen storage properties of LiBH4 by mechanical milling with various carbon additives. International Journal of Hydrogen Energy, 2010, 35, 8247-8252.	3.8	48
51	Facet- and defect-engineered Pt/Fe2O3 nanocomposite catalyst for catalytic oxidation of airborne formaldehyde under ambient conditions. Journal of Hazardous Materials, 2020, 395, 122628.	6.5	48
52	Hydrogen generation from coupling reactions of sodium borohydride and aluminum powder with aqueous solution of cobalt chloride. Catalysis Today, 2011, 170, 50-55.	2.2	47
53	Highly efficient Ni@Ni–Pt/La2O3 catalyst for hydrogen generation from hydrous hydrazine decomposition: Effect of Ni–Pt surface alloying. Journal of Power Sources, 2015, 300, 294-300.	4.0	47
54	New Insights into Catalytic Hydrolysis Kinetics of Sodium Borohydride from Michaelisâ^'Menten Model. Journal of Physical Chemistry C, 2008, 112, 15886-15892.	1.5	45

Ping Wang

#	Article	IF	CITATIONS
55	Effect of trapped hydrogen on the induction period of cobalt–tungsten–boron/nickel foam catalyst in catalytic hydrolysis reaction of sodium borohydride. Catalysis Today, 2011, 170, 27-32.	2.2	45
56	Effect of SWNTs on the reversible hydrogen storage properties of LiBH4–MgH2 composite. International Journal of Hydrogen Energy, 2008, 33, 5611-5616.	3.8	44
57	In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3. Applied Physics Letters, 2009, 94, 044104.	1.5	44
58	Synthesis, formation mechanism, and dehydrogenation properties of the long-sought Mg(NH2BH3)2 compound. Energy and Environmental Science, 2013, 6, 1018.	15.6	44
59	Highly dispersed nickel nitride nanoparticles on nickel nanosheets as an active catalyst for hydrazine electrooxidation. Journal of Materials Chemistry A, 2020, 8, 632-638.	5.2	44
60	The identification of optimal active boron sites for N ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 3910-3917.	5.2	44
61	Catalytically Enhanced Hydrogen Storage Properties of Mg(NH ₂) ₂ + 2LiH Material by Graphite-Supported Ru Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 18280-18285.	1.5	42
62	Controlled hydrogen generation by reaction of aluminum/sodium hydroxide/sodium stannate solid mixture with water. International Journal of Hydrogen Energy, 2012, 37, 5811-5816.	3.8	40
63	Evaluation of a cobalt–molybdenum–boron catalyst for hydrogen generation of alkaline sodium borohydride solution–aluminum powder system. Journal of Power Sources, 2013, 224, 304-311.	4.0	40
64	Complete and Rapid Conversion of Hydrazine Monohydrate to Hydrogen over Supported Ni–Pt Nanoparticles on Mesoporous Ceria for Chemical Hydrogen Storage. Chemistry - A European Journal, 2015, 21, 15439-15445.	1.7	40
65	Hydriding properties of a mechanically milled Mg–50 wt.% ZrFe1.4Cr0.6 composite. Journal of Alloys and Compounds, 2000, 297, 240-245.	2.8	39
66	Catalytic effect of Al3Ti on the reversible dehydrogenation of NaAlH4. Journal of Alloys and Compounds, 2006, 424, 365-369.	2.8	38
67	A Comparative Study of the Structural, Electronic, and Vibrational Properties of NH ₃ BH ₃ and LiNH ₂ BH ₃ : Theory and Experiment. ChemPhysChem, 2009, 10, 1825-1833.	1.0	38
68	Niâ^'Zn Alloy Nanosheets Arrayed on Nickel Foamas a Promising Catalyst for Electrooxidation of Hydrazine. ChemElectroChem, 2017, 4, 1944-1949.	1.7	38
69	NiPt Nanoparticles Anchored onto Hierarchical Nanoporous N-Doped Carbon as an Efficient Catalyst for Hydrogen Generation from Hydrazine Monohydrate. ACS Applied Materials & Interfaces, 2020, 12, 18617-18624.	4.0	38
70	Structural and hydriding properties of composite Mg–ZrFe1.4Cr0.6. Acta Materialia, 2001, 49, 921-926.	3.8	37
71	Mg–FeTi1.2 (amorphous) composite for hydrogen storage. Journal of Alloys and Compounds, 2002, 334, 243-248.	2.8	37
72	Reversible dehydrogenation of LiBH4 catalyzed by as-prepared single-walled carbon nanotubes. Scripta Materialia, 2008, 58, 922-925.	2.6	37

Ping Wang

#	Article	IF	CITATIONS
73	Catalytically enhanced dehydrogenation of Li–Mg–N–H hydrogen storage material by transition metal nitrides. Journal of Alloys and Compounds, 2009, 468, L21-L24.	2.8	37
74	A new reactivation method towards deactivation ofÂhoneycomb ceramic monolith supported cobalt–molybdenum–boron catalyst in hydrolysisÂof sodium borohydride. International Journal of Hydrogen Energy, 2015, 40, 9373-9381.	3.8	37
75	Electroless plating of Ni–B film as a binder-free highly efficient electrocatalyst for hydrazine oxidation. Applied Surface Science, 2017, 409, 132-139.	3.1	37
76	Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation. Journal of Power Sources, 2019, 412, 71-77.	4.0	36
77	Formation and Hydrogen Storage Properties of Dual-Cation (Li, Ca) Borohydride. Journal of Physical Chemistry C, 2010, 114, 22736-22741.	1.5	35
78	Ni–Pt/CeO ₂ Loaded on Granular Activated Carbon: An Efficient Monolithic Catalyst for Controlled Hydrogen Generation from Hydrous Hydrazine. ACS Sustainable Chemistry and Engineering, 2018, 6, 9876-9882.	3.2	35
79	LiBH4·NH3BH3: A new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties. International Journal of Hydrogen Energy, 2012, 37, 10750-10757.	3.8	34
80	Catalytic decomposition of hydrous hydrazine over NiPt/La2O3Âcatalyst: A high-performance hydrogen storageÂsystem. International Journal of Hydrogen Energy, 2016, 41, 11042-11049.	3.8	34
81	Kinetics of catalytic decomposition of hydrous hydrazine over CeO 2 -supported bimetallic Ni–Pt nanocatalysts. International Journal of Hydrogen Energy, 2017, 42, 5684-5693.	3.8	34
82	Promotion of hydrogen release from ammonia borane with magnesium nitride. Dalton Transactions, 2011, 40, 6469.	1.6	33
83	A novel three-step method for preparation of a TiB2-promoted LiBH4–MgH2 composite for reversible hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 2153.	1.3	33
84	Cobaltâ€Tungstenâ€Boron as an Active Electrocatalyst for Water Electrolysis. ChemistrySelect, 2017, 2, 6187-6193.	0.7	33
85	Effect of carbon addition on hydrogen storage behaviors of Li–Mg–B–H system. International Journal of Hydrogen Energy, 2010, 35, 3072-3075.	3.8	32
86	Effects of Ni(OH) ₂ Morphology on the Catalytic Performance of Pd/Ni(OH) ₂ /Ni Foam Hybrid Catalyst toward Ethanol Electrooxidation. ACS Applied Energy Materials, 2018, 1, 6040-6046.	2.5	32
87	Highly dispersed Ni2â^'Mo P nanoparticles on oxygen-defect-rich NiMoO4â^' nanosheets as an active electrocatalyst for alkaline hydrogen evolution reaction. Journal of Power Sources, 2019, 444, 227311.	4.0	32
88	Surface phosphorization of hierarchically nanostructured nickel molybdenum oxide derived electrocatalyst for direct hydrazine fuel cell. Applied Catalysis B: Environmental, 2020, 268, 118388.	10.8	32
89	Advantage of TiF3 over TiCl3 as a dopant precursor to improve the thermodynamic property of Na3AlH6. Scripta Materialia, 2007, 56, 361-364.	2.6	31
90	Tuning the Surface Composition of Ni/ <i>meso</i> eO ₂ with Iridium as an Efficient Catalyst for Hydrogen Generation from Hydrous Hydrazine. Chemistry - A European Journal, 2018, 24, 4902-4908.	1.7	31

#	Article	IF	CITATIONS
91	Hydrogen in mechanically milled amorphous boron. Journal of Alloys and Compounds, 2003, 350, 218-221.	2.8	29
92	Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO 2 catalyst. Progress in Natural Science: Materials International, 2017, 27, 121-125.	1.8	29
93	Hierarchically Nanostructured Nickel–Cobalt Alloy Supported on Nickel Foam as a Highly Efficient Electrocatalyst for Hydrazine Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 16583-16590.	3.2	29
94	Hydrogen generation from solvolysis of sodium borohydride in ethylene glycol–water mixtures over a wide range of temperature. RSC Advances, 2013, 3, 23810.	1.7	28
95	Hydrogen generation from hydrolysis of solid sodium borohydride promoted by a cobalt–molybdenum–boron catalyst and aluminum powder. International Journal of Hydrogen Energy, 2013, 38, 10845-10850.	3.8	26
96	Improved reversible dehydrogenation of 2LiBH ₄ –MgH ₂ composite by the controlled formation of transition metal boride. Journal of Materials Chemistry A, 2014, 2, 2146-2151.	5.2	26
97	Understanding of Selective H ₂ Generation from Hydrazine Decomposition on Ni(111) Surface. Journal of Physical Chemistry C, 2018, 122, 5443-5451.	1.5	26
98	Enhanced Hydrogen Storage Properties of Liâ^'Mgâ^'Nâ^'H System Prepared by Reacting Mg(NH2)2 with Li3N. Journal of Physical Chemistry C, 2009, 113, 9944-9949.	1.5	25
99	In situ formation of Ti hydride and its catalytic effect in doped NaAlH4 prepared by milling NaH/Al with metallic Ti powder. International Journal of Hydrogen Energy, 2007, 32, 2943-2948.	3.8	24
100	Efficient and highly rapid hydrogen release from ball-milled 3NH3BH3/MMgH3 (MÂ=ÂNa, K, Rb) mixtures at low temperatures. International Journal of Hydrogen Energy, 2012, 37, 4259-4266.	3.8	24
101	A study of degradation phenomenon of Ni–Pt/CeO2 catalyst towards hydrogen generation from hydrous hydrazine. International Journal of Hydrogen Energy, 2017, 42, 16355-16361.	3.8	24
102	Identification of Active Sites in HCHO Oxidation over TiO ₂ -Supported Pt Catalysts. ACS Catalysis, 2022, 12, 5565-5573.	5.5	24
103	KH+Ti co-doped NaAlH4 for high-capacity hydrogen storage. Journal of Applied Physics, 2005, 98, 074905.	1.1	23
104	Direct formation of Na3AlH6 by mechanical milling NaHâ^•Al with TiF3. Applied Physics Letters, 2005, 87, 071911.	1.5	23
105	Improved reversible dehydrogenation properties of LiBH4–MgH2 composite by tailoring nanophase structure using activated carbon. International Journal of Hydrogen Energy, 2013, 38, 3710-3716.	3.8	23
106	Study of formation mechanism of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine. Journal of Alloys and Compounds, 2019, 787, 1187-1194.	2.8	23
107	Improving Hydrogen Storage Performance of NaAlH4by Novel Two-Step Milling Method. Journal of Physical Chemistry C, 2007, 111, 4879-4884.	1.5	22
108	Facile solid-phase synthesis of the diammoniate of diborane and its thermal decomposition behavior. Physical Chemistry Chemical Physics, 2011, 13, 7508.	1.3	22

#	Article	IF	CITATIONS
109	Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10338-10345.	5.2	22
110	Mechanically Milling with Off-the-Shelf Magnesium Powder to Promote Hydrogen Release from Ammonia Borane. Journal of Physical Chemistry C, 2010, 114, 10606-10611.	1.5	21
111	Decomposition behavior of MgH2 prepared by reaction ball-milling. Scripta Materialia, 2000, 43, 83-87.	2.6	20
112	Noble-Metal-Free Ni–W–O-Derived Catalysts for High-Capacity Hydrogen Production from Hydrazine Monohydrate. ACS Sustainable Chemistry and Engineering, 2020, 8, 5595-5603.	3.2	20
113	Hierarchically nanostructured Ni2Fe2N as an efficient electrocatalyst for hydrazine oxidation reaction. Chemical Engineering Journal, 2022, 431, 134123.	6.6	20
114	Direct hydrogenation of Mg and decomposition behavior of the hydride formed. Journal of Alloys and Compounds, 2000, 313, 209-213.	2.8	19
115	Renewed Insight into the Promoting Mechanism of Magnesium Hydride on Ammonia Borane. ChemPhysChem, 2010, 11, 2152-2157.	1.0	19
116	A simple and efficient approach to synthesize amidoborane ammoniates: case study for Mg(NH2BH3)2(NH3)3 with unusual coordination structure. Journal of Materials Chemistry, 2012, 22, 13174.	6.7	19
117	High-capacity hydrogen generation from hydrazine monohydrate using a noble-metal-free Ni10Mo/Ni–Mo–O nanocatalyst. International Journal of Hydrogen Energy, 2019, 44, 15110-15117.	3.8	19
118	Dependence of H-storage performance on preparation conditions in TiF3 doped NaAlH4. Journal of Alloys and Compounds, 2006, 421, 217-222.	2.8	18
119	Electron microscopy study of Ti-doped sodium aluminum hydride prepared by mechanical milling NaHâ^•Al with Ti powder. Journal of Applied Physics, 2006, 100, 034914.	1.1	18
120	Engineering oxygen vacancies via amorphization in conjunction with W-doping as an approach to boosting catalytic properties of Pt/Fe-W-O for formaldehyde oxidation. Journal of Hazardous Materials, 2021, 416, 126224.	6.5	18
121	Hierarchical Nanostructured Co–Mo–B/CoMoO _{4–<i>x</i>} Amorphous Composite for the Alkaline Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 42605-42612.	4.0	18
122	Hierarchically nanostructured (Ni,Co)phosphides for hydrazine electrooxidation. Electrochimica Acta, 2021, 387, 138492.	2.6	16
123	Nanostructured graphite-induced destabilization of LiBH4 for reversible hydrogen storage. Journal of Alloys and Compounds, 2016, 685, 242-247.	2.8	15
124	Preliminary investigation on the catalytic mechanism of TiF3 additive in MgH2–TiF3 H-storage system. Journal of Materials Research, 2007, 22, 1779-1786.	1.2	14
125	Unexpected Dehydrogenation Behaviors of the 2LiBH ₄ –MgH ₂ Composite Confined in a Mesoporous Carbon Scaffold. Journal of Physical Chemistry C, 2014, 118, 26447-26453.	1.5	14
126	Supported Ni@Ni ₂ P Core–Shell Nanotube Arrays on Ni Foam for Hydrazine Electrooxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 4564-4570.	3.2	14

#	Article	IF	CITATIONS
127	Free-standing Pt–Ni nanowires catalyst for H ₂ generation from hydrous hydrazine. Chemical Communications, 2021, 57, 623-626.	2.2	13
128	Enhanced H-storage property in Li–Co–N–H system by promoting ion migration. Journal of Alloys and Compounds, 2008, 466, L1-L4.	2.8	12
129	Effect of Li ₃ N additive on the hydrogen storage properties of Li-Mg-N-H system. Journal of Materials Research, 2009, 24, 1936-1942.	1.2	12
130	Improved reversible dehydrogenation of LiBH4–MgH2 composite by the synergistic effects of Al and MgO. International Journal of Hydrogen Energy, 2014, 39, 2187-2193.	3.8	12
131	Bismuth hollow nanospheres for efficient electrosynthesis of ammonia under ambient conditions. Journal of Alloys and Compounds, 2020, 830, 154668.	2.8	12
132	Hierarchical Nanostructured Pd/Co ₃ Nâ€Ni ₃ N as an Efficient Catalyst for Ethanol Electrooxidation in Alkaline Media. Advanced Materials Interfaces, 2020, 7, 1901875.	1.9	12
133	Characterization of hydrogenated amorphous boron by a combination of infrared absorption spectroscopy and thermal analyses. Journal of Alloys and Compounds, 2003, 359, L1-L3.	2.8	11
134	A study of the mechanically milled h-BN-H system. Applied Physics A: Materials Science and Processing, 2004, 78, 1235-1239.	1.1	11
135	Li2(NH2BH3)(BH4)/LiNH2BH3: The first metal amidoborane borohydride complex with inseparable amidoborane precursor for hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 197-204.	3.8	11
136	Constructing MnO2 alpha/amorphous heterophase junction by mechanochemically induced phase transformation for formaldehyde oxidation. Applied Surface Science, 2022, 589, 152855.	3.1	11
137	The effect of complex halides and binary halides on hydrogen release for the 2LiBH4:1MgH2 system. Faraday Discussions, 2011, 151, 133.	1.6	10
138	Improved reversible dehydrogenation properties of 2LiBH4–MgH2 composite by milling with graphitic carbon nitride. International Journal of Hydrogen Energy, 2014, 39, 13369-13374.	3.8	10
139	Rapidly Releasing over 9 wt % of H ₂ from NH ₃ BH ₃ –Mg or NH ₃ BH ₃ –MgH ₂ Composites around 85 °C. Journal of Physical Chemistry C, 2016, 120, 18386-18393.	1.5	10
140	An ultra-highly active Ir–Ru–B/CeO ₂ catalyst for hydrogen generation from hydrazine monohydrate. Journal of Materials Chemistry A, 2021, 9, 18385-18392.	5.2	10
141	Combined Usage of Sodium Borohydride and Aluminum Powder for Highâ€performance Hydrogen Generation. Fuel Cells, 2011, 11, 424-430.	1.5	9
142	Carbon-coated cobalt molybdenum oxide as a high-performance electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 23101-23108.	3.8	9
143	Intrinsically Synergistic Active Centers Coupled with Surface Metal Doping To Facilitate Alkaline Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 24220-24224.	1.5	9
144	A core-shell structured CoMoO4â‹nH2O@Co1-xFexOOH nanocatalyst for electrochemical evolution of oxygen. Electrochimica Acta, 2020, 345, 136125.	2.6	9

#	Article	IF	CITATIONS
145	Facile Synthesis of Highly Dispersed and Wellâ€Alloyed Bimetallic Nanoparticles on Oxide Support. Small, 2022, 18, e2106143.	5.2	9
146	Bicontinuous nanoporous Ni-Fe alloy as a highly active catalyst for hydrazine electrooxidation. Journal of Alloys and Compounds, 2022, 906, 164370.	2.8	8
147	Superior low-temperature hydrogen release from the ball-milled NH3BH3–LiNH2–LiBH4 composite. International Journal of Hydrogen Energy, 2013, 38, 4648-4653.	3.8	7
148	Direct hydrogenation of Mg under the action of FeTi1.2 (amorphous) and mechanical driving force. Journal of Materials Science Letters, 2001, 20, 753-754.	0.5	4
149	Linear scaling relations for N2H4 decomposition over transition metal catalysts. International Journal of Hydrogen Energy, 2020, 45, 16114-16121.	3.8	4
150	Metal-organic frameworks-derived Ni2P@C Nanocomposite as a high-performance catalyst for hydrazine electrooxidation. Journal of Alloys and Compounds, 2022, 902, 163746.	2.8	4
151	Impact of preparation conditions on hydrogen storage performance of metallic Ti-doped NaAlH4. Rare Metals, 2006, 25, 266-272.	3.6	2
152	Hierarchically Nanostructured Palladium/Cobalt Carbonate Hydroxide Nanocomposite as an Efficient Catalyst for Ethanol Electro-oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 10840-10846.	1.8	1
153	Preliminary study on mechanically milled hydrogenated nanostructured B4C. Journal of Alloys and Compounds, 2004, 363, L3-L6.	2.8	0