
Oleg N Burov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6082319/publications.pdf Version: 2024-02-01

OLEC N RUPOV

#	Article	IF	CITATIONS
1	Oxidative alkylamination of azinones as a direct route to aminoazinones: study of some condensed diazinones. Tetrahedron, 2008, 64, 696-707.	1.9	44
2	Competitive Ring Expansion of Azetidines into Pyrrolidines and/or Azepanes. Journal of Organic Chemistry, 2016, 81, 6677-6685.	3.2	32
3	Synthesis and biological properties of nitrobenzoxadiazole derivatives as potential nitrogen(ii) oxide donors: SOX induction, toxicity, genotoxicity, and DNA protective activity in experiments using Escherichia coli-based lux biosensors. Russian Chemical Bulletin, 2015, 64, 1369-1377.	1.5	18
4	Synthesis and antiviral activity of bis-spirocyclic derivatives of rhodanine. Russian Chemical Bulletin, 2014, 63, 1130-1136.	1.5	17
5	4,5-Bis(dimethylamino)quinolines: Proton Sponge versus Azine Behavior. Organic Letters, 2012, 14, 4134-4137.	4.6	15
6	Mechanism of Thiol-Induced Nitrogen(II) Oxide Donation by Furoxans: a Quantum-Chemical Study. Chemistry of Heterocyclic Compounds, 2015, 51, 951-960.	1.2	14
7	Synthesis of (Alkylamino)nitroarenes by Oxidative Alkylamination of Nitroarenes. European Journal of Organic Chemistry, 2009, 2009, 564-574.	2.4	13
8	Regio- and stereoselective synthesis of α-hydroxy-β-azido tetrazoles. Organic Chemistry Frontiers, 2015, 2, 492-496.	4.5	13
9	Sequential SNAr and Diels–Alder reactivity of superelectrophilic 10π heteroaromatic substrates. Tetrahedron, 2016, 72, 2254-2264.	1.9	12
10	Synthesis and spectral-luminescence properties of 2-[2-(pyridin-4-yl)vinyl]quinolines. Russian Journal of General Chemistry, 2015, 85, 1074-1077.	0.8	11
11	Synthesis of the first 13-nitroaryl derivatives of 8-acetonylberberine. Chemistry of Heterocyclic Compounds, 2015, 51, 772-774.	1.2	11
12	Spectral luminescent properties of 2-(2-hydroxyphenyl)-5-methyl-1,3,4-oxadiazole and its acetyl(benzoyl)oxy derivatives. Russian Journal of Organic Chemistry, 2016, 52, 1700-1703.	0.8	11
13	Spectral and luminescent properties of 2-(2-hydroxyphenyl)-5-(2,6-difluorophenyl)-1,3,4-oxadiazole and its methoxy and benzyloxy derivatives. Russian Journal of General Chemistry, 2016, 86, 2702-2705.	0.8	10
14	Synthesis and luminescent properties of 2-(2′-hydroxyphenyl)-5-(2″,6″-dichlorophenyl)-1,3,4-oxadiazole and its methoxyl and acetyloxyl derivatives. Russian Journal of General Chemistry, 2016, 86, 406-409.	0.8	10
15	Synthesis and structure of dihydroberberine nitroaryl derivatives – potential ligands for G-quadruplexes. Chemistry of Heterocyclic Compounds, 2017, 53, 335-340.	1.2	10
16	Mechanisms of nitric oxide generation in living systems. Nitric Oxide - Biology and Chemistry, 2022, 118, 1-16.	2.7	10
17	Revisiting the Synthesis of 4,6â€Difluorobenzofuroxan: A Study of Its Reactivity and Access to Fluorinated Quinoxaline Oxides. European Journal of Organic Chemistry, 2014, 2014, 6451-6466.	2.4	9
18	Experimental and quantum-chemical study of nucleophilic substitution mechanism in berberine. Chemistry of Heterocyclic Compounds, 2015, 51, 997-1007.	1.2	9

Oleg N Burov

#	Article	IF	CITATIONS
19	The first 13-vinyl derivatives of berberine: synthesis and antimicrobial activity. Chemistry of Heterocyclic Compounds, 2019, 55, 1128-1130.	1.2	9
20	Reaction of 2-chloroindole-3-carbaldehyde with epihalogenohydrins. Tandem oxirane-opening—1,3-oxazole-closure process. Tetrahedron, 2011, 67, 8775-8779.	1.9	8
21	Reaction of 1-(oxiran-2-ylmethyl)-1H-indole-3-carboxaldehyde with amines. Mendeleev Communications, 2011, 21, 231-233.	1.6	8
22	[3+2] Cycloaddition Reactions to Indolyl- and Pyrrolyl Derivatives of Dinitrobenzofurazan. Chemistry of Heterocyclic Compounds, 2015, 50, 1731-1740.	1.2	8
23	From 3-Acyl-2-methylindoles to Î ³ -Carbolines: Li-Promoted Cycloaddition Reaction and Its Quantum Chemical Study. Journal of Organic Chemistry, 2019, 84, 13721-13732.	3.2	8
24	Lithium-Promoted Cycloaddition of Indole-2,3-dienolates and Carbon Disulfide as a One-Pot Route to Thiopyrano[4,3- <i>b</i>]indole-3(5 <i>H</i>)-thiones. Journal of Organic Chemistry, 2021, 86, 11698-11707.	3.2	8
25	Quantum chemical studies of the oxidative alkylamination of diazinones. Russian Chemical Bulletin, 2013, 62, 1156-1163.	1.5	6
26	Quantum-chemical and NMR study of nitrofuroxanoquinoline cycloaddition. Chemistry of Heterocyclic Compounds, 2015, 51, 845-857.	1.2	6
27	Effect of bulky substituents on the photochromic properties of indoline spiropyrans containing an annelated aromatic or heteroaromatic fragment. Doklady Chemistry, 2016, 470, 268-273.	0.9	6
28	Thiol-induced nitric oxide donation mechanisms in substituted dinitrobenzofuroxans. Nitric Oxide - Biology and Chemistry, 2017, 62, 44-51.	2.7	6
29	Non-canonical DNA structures: Comparative quantum mechanical study. Biophysical Chemistry, 2018, 235, 19-28.	2.8	6
30	αâ€Hydroxyâ€Tetrazoles as Latent Ethynyl Moieties: A Mechanistic Investigation. European Journal of Organic Chemistry, 2019, 2019, 342-350.	2.4	6
31	Benzoid-quinoid tautomerism of Schiff bases and their structural analogs: LV. Crown-containing N-phenylimines derived from ortho-hydroxycarbaldehydes of the coumarin series. Russian Journal of Organic Chemistry, 2013, 49, 374-378.	0.8	5
32	The mechanisms of nucleophilic substitution in 1-methyl-3,4,5-trinitropyrazole. Computational and Theoretical Chemistry, 2014, 1033, 31-42.	2.5	5
33	Competing mechanisms of Norrish and Norrish-like reactions in a wide range of systems – From carbonyl compounds to nitrogen oxide donators. Computational and Theoretical Chemistry, 2014, 1047, 55-66.	2.5	5
34	Comprehensive study of nitrofuroxanoquinolines. New perspective donors of NO molecules. Nitric Oxide - Biology and Chemistry, 2019, 93, 15-24.	2.7	5
35	Zwitterionic spirocycles based on dinitrobenzofurazan and tropolone heteroanalogs. Russian Journal of Organic Chemistry, 2013, 49, 1373-1378.	0.8	4
36	Synthesis and spectral-luminescent properties of methyl and benzyl ethers of 2-[(E)-2-(pyridin-3-yl)vinyl]quinolin-8-ol. Russian Journal of General Chemistry, 2016, 86, 989-991.	0.8	4

Oleg N Burov

#	Article	IF	CITATIONS
37	Unexpected pyrylium to pyrylium domino transformation. Synthesis of pyrano[3,4-c]pyran-7-ium cation and its recyclization to 2,7-naphthyridine derivative. Chemistry of Heterocyclic Compounds, 2017, 53, 156-160.	1.2	4
38	Oxidative alkylamination of 2-methyl-3(2H)-cinnolinone: unexpected dealkylation of the entering alkylamino group. Chemistry of Heterocyclic Compounds, 2009, 45, 475-482.	1.2	3
39	Synthesis of Spirocyclic Pyrrolizidineoxyindoles with a Furotropylidene Fragment by 1,3-Dipolar Cycloaddition. Chemistry of Heterocyclic Compounds, 2014, 50, 26-34.	1.2	3
40	Cycloaddition of [3]dendralene derivatives to dinitrobenzofuroxan and nitrobenzodifuroxan. Chemistry of Heterocyclic Compounds, 2015, 51, 903-912.	1.2	3
41	Synthesis and [3 + 2]-cycloaddition reactions of superelectrophilic (dimethylaminophenyl)benzofulvene derivatives. Russian Journal of Organic Chemistry, 2015, 51, 449-451.	0.8	3
42	Spectral and theoretical study of complexes with metal ions M(II). Russian Journal of General Chemistry, 2015, 85, 1706-1712.	0.8	3
43	Oligonucleotide cross-linking with copper ions. Spectral and quantum chemical study. Russian Journal of General Chemistry, 2016, 86, 2647-2652.	0.8	3
44	Charge Transfer Complexes Formed by Heterocyclic Thioamides and Tetracyanoethylene: Experimental and Theoretical Study. Journal of Physical Chemistry A, 2017, 121, 7000-7008.	2.5	3
45	The Synthesis and Investigation of New Electroneutral Berberine Derivatives. Chemistry of Heterocyclic Compounds, 2022, 58, 45-57.	1.2	3
46	Mechanisms for the formation of five-membered rings in ethene addition reactions with azomethine ylide and allyl anion. Chemistry of Heterocyclic Compounds, 2016, 52, 700-710.	1.2	2
47	Spectral luminescent properties of 2-aryl-5-(2,4,6-trimethylphenyl)-1Е1,3,4-oxadiazoles. Russian Journal of Organic Chemistry, 2017, 53, 808-811.	0.8	2
48	New 13-vinyl derivatives of berberine: synthesis and characterization. Chemistry of Heterocyclic Compounds, 2022, 58, 144-152.	1.2	2
49	Zwitter-ionic structure of diethoxyfurotropylium dimethylbarbiturate. Russian Journal of Organic Chemistry, 2014, 50, 1223-1224.	0.8	1
50	Synthesis, structure, and properties of the product formed in the reaction of ortho-diphenylphosphinobenzaldehyde and N-tosyl-1,2-phenylenediamine. Russian Journal of General Chemistry, 2015, 85, 104-110.	0.8	1
51	Oligonucleotides-transformers for molecular biology and nanoengineering. Gene, 2022, 820, 146277.	2.2	1
52	Theoretical investigation of von Braun and von Braunâ€like reactions. International Journal of Quantum Chemistry, 2020, 120, e26088.	2.0	0
53	A Multifield Study on Dimethyl Acetylenedicarboxylate: A Reagent Able to Build a New Cycle on Diaminoimidazoles. Molecules, 2022, 27, 3326.	3.8	0