Natalia Bercovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6081983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature, 2020, 584, 602-607.	13.7	263
2	Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants, 2019, 5, 54-62.	4.7	172
3	The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Research, 2014, 42, 5217-5233.	6.5	93
4	The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Research, 2009, 37, 5511-5528.	6.5	62
5	Trypanosoma cruzi: Analysis of the complete PUF RNA-binding protein family. Experimental Parasitology, 2006, 113, 112-124.	0.5	35
6	Genetic basis and dual adaptive role of floral pigmentation in sunflowers. ELife, 2022, 11, .	2.8	24
7	Functional characterization and protein–protein interactions of trypanosome splicing factors U2AF35, U2AF65 and SF1. Molecular and Biochemical Parasitology, 2009, 164, 137-146.	0.5	23
8	Unique features of the Trypanosoma cruzi U2AF35 splicing factorâ~†. Molecular and Biochemical Parasitology, 2003, 128, 77-81.	0.5	22
9	Protein interactions within the TcZFP zinc finger family members of Trypanosoma cruzi: Implications for their functions. Biochemical and Biophysical Research Communications, 2005, 333, 1017-1025.	1.0	18
10	Identification of core components of the exon junction complex in trypanosomes. Molecular and Biochemical Parasitology, 2009, 166, 190-193.	0.5	18
11	Mutation Load in Sunflower Inversions Is Negatively Correlated with Inversion Heterozygosity. Molecular Biology and Evolution, 2022, 39, .	3.5	18
12	Protein–protein interaction map of the Trypanosoma cruzi ribosomal P protein complex. Gene, 2005, 357, 129-136.	1.0	16
13	Standing variation rather than recent adaptive introgression probably underlies differentiation of the <i>texanus</i> subspecies of <i>Helianthus annuus</i> . Molecular Ecology, 2021, 30, 6229-6245.	2.0	13
14	Mapping of the protein-binding interface between splicing factors SF3b155 and p14 of Trypanosoma cruzi. Biochemical and Biophysical Research Communications, 2007, 364, 26-32.	1.0	12
15	Analysis of a nuclear localization signal in the p14 splicing factor in Trypanosoma cruzi. International Journal for Parasitology, 2010, 40, 1029-1035.	1.3	11
16	The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochemical and Biophysical Research Communications, 2009, 380, 850-855.	1.0	8