List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/608186/publications.pdf Version: 2024-02-01

		16411	24179
312	15,741	64	110
papers	citations	h-index	g-index
322	322	322	13426
all docs	docs citations	times ranked	citing authors

FELLY M CONL

#	Article	IF	CITATIONS
1	Quantitative studies of the structure of proteins in solution by fourier-transform infrared spectroscopy. Progress in Biophysics and Molecular Biology, 1993, 59, 23-56.	1.4	764
2	Detergent-resistant membranes should not be identified with membrane rafts. Trends in Biochemical Sciences, 2005, 30, 430-436.	3.7	446
3	Compartmentalization of ceramide signaling: physical foundations and biological effects. Journal of Cellular Physiology, 2000, 184, 285-300.	2.0	423
4	Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Progress in Biophysics and Molecular Biology, 1999, 72, 367-405.	1.4	377
5	Membranes: a meeting point for lipids, proteins and therapies. Journal of Cellular and Molecular Medicine, 2008, 12, 829-875.	1.6	348
6	Sphingomyelinases: enzymology and membrane activity. FEBS Letters, 2002, 531, 38-46.	1.3	312
7	Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome?. FEBS Letters, 2002, 531, 47-53.	1.3	302
8	The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1467-1476.	1.4	264
9	Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1902-1921.	1.4	245
10	Transbilayer (<i>flipâ€flop</i>) lipid motion and lipid scrambling in membranes. FEBS Letters, 2010, 584, 1779-1786.	1.3	224
11	Ceramides in Phospholipid Membranes: Effects on Bilayer Stability and Transition to Nonlamellar Phases. Biophysical Journal, 1999, 76, 342-350.	0.2	223
12	Structure and functional properties of diacylglycerols in membranes1This work is dedicated to Professor Vittorio Luzzati on occasion of his 75th birthday.1. Progress in Lipid Research, 1999, 38, 1-48.	5.3	222
13	Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions. Biophysical Journal, 2007, 93, 3548-3554.	0.2	208
14	Interaction of the HIV-1 Fusion Peptide with Phospholipid Vesicles: Different Structural Requirements for Fusion and Leakage. Biochemistry, 1994, 33, 3201-3209.	1.2	207
15	Sphingolipids and cell death. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 923-939.	2.2	203
16	Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 665-684.	1.2	186
17	The Mechanism of Detergent Solubilization of Lipid Bilayers. Biophysical Journal, 2013, 105, 289-299.	0.2	182
18	Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 169-177.	1.4	180

#	Article	IF	CITATIONS
19	Membrane Interface-Interacting Sequences within the Ectodomain of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein: Putative Role during Viral Fusion. Journal of Virology, 2000, 74, 8038-8047.	1.5	168
20	Lipid–protein interactions in GPCR-associated signaling. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 836-852.	1.4	157
21	Interaction of Cholesterol with Sphingomyelin in Mixed Membranes Containing Phosphatidylcholine, Studied by Spin-Label ESR and IR Spectroscopies. A Possible Stabilization of Gel-Phase Sphingolipid Domains by Cholesterol. Biochemistry, 2001, 40, 2614-2622.	1.2	146
22	Liposome fusion catalytically induced by phospholipase C. Biochemistry, 1989, 28, 7364-7367.	1.2	144
23	Different Effects of Enzyme-generated Ceramides and Diacylglycerols in Phospholipid Membrane Fusion and Leakage. Journal of Biological Chemistry, 1996, 271, 26616-26621.	1.6	143
24	Detergent-Resistant, Ceramide-Enriched Domains in Sphingomyelin/Ceramide Bilayers. Biophysical Journal, 2006, 90, 903-914.	0.2	141
25	Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects. Biophysical Journal, 1997, 73, 1977-1986.	0.2	138
26	Membrane Restructuring via Ceramide Results in Enhanced Solute Efflux. Journal of Biological Chemistry, 2002, 277, 11788-11794.	1.6	134
27	Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy. Biochemistry, 1994, 33, 11650-11655.	1.2	132
28	Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12, 2213-2229.	4.3	118
29	Surfactant-induced release of liposomal contents. A survey of methods and results. Biochimica Et Biophysica Acta - Biomembranes, 1988, 937, 127-134.	1.4	117
30	Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chemistry and Physics of Lipids, 1998, 96, 53-68.	1.5	116
31	Detergent solubilization of lipid bilayers: a balance of driving forces. Trends in Biochemical Sciences, 2013, 38, 85-93.	3.7	116
32	Surfactant-induced cell toxicity and cell lysis. Biochemical Pharmacology, 1990, 40, 1323-1328.	2.0	111
33	Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes. Journal of Biological Chemistry, 2003, 278, 37169-37174.	1.6	107
34	The Physical Properties of Ceramides in Membranes. Annual Review of Biophysics, 2018, 47, 633-654.	4.5	107
35	Different Effects of Long- and Short-Chain Ceramides on the Gel-Fluid and Lamellar-Hexagonal Transitions of Phospholipids: A Calorimetric, NMR, and X-Ray Diffraction Study. Biophysical Journal, 2005, 88, 3368-3380.	0.2	102
36	Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophysical Journal, 1997, 72, 2630-2637.	0.2	100

#	Article	IF	CITATIONS
37	Asymmetric Addition of Ceramides but not Dihydroceramides Promotes Transbilayer (Flip-Flop) Lipid Motion in Membranes. Biophysical Journal, 2005, 88, 348-359.	0.2	100
38	The interaction of phosphatidylcholine bilayers with Triton X-100. FEBS Journal, 1986, 160, 659-665.	0.2	99
39	Protein-lipid interaction. Biochimica Et Biophysica Acta - Biomembranes, 1980, 598, 502-516.	1.4	98
40	Release of lipid vesicle contents by the bacterial protein toxin α-haemolysin. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1147, 81-88.	1.4	97
41	Characterization of ATP and DNA Binding Activities of TrwB, the Coupling Protein Essential in Plasmid R388 Conjugation. Journal of Biological Chemistry, 1999, 274, 36117-36124.	1.6	97
42	Cholesterol displacement by ceramide in sphingomyelinâ€containing liquidâ€ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Letters, 2008, 582, 3230-3236.	1.3	96
43	Cholesterol interactions with ceramide and sphingomyelin. Chemistry and Physics of Lipids, 2016, 199, 26-34.	1.5	92
44	Topological properties of two cubic phases of a phospholipid : cholesterol: diacylglycerol aqueous system and their possible implications in the phospholipase C-induced liposome fusion. FEBS Letters, 1995, 368, 143-147.	1.3	88
45	TrwD, a Protein Encoded by the IncW Plasmid R388, Displays an ATP Hydrolase Activity Essential for Bacterial Conjugation. Journal of Biological Chemistry, 1997, 272, 25583-25590.	1.6	88
46	Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 112-118.	1.4	88
47	The pre-transmembrane region of the human immunodeficiency virus type-1 glycoprotein: a novel fusogenic sequence. FEBS Letters, 2000, 477, 145-149.	1.3	88
48	Thermodynamic and Structural Stability of Cytochrome c Oxidase from Paracoccus denitrificans. Biochemistry, 1994, 33, 9731-9740.	1.2	86
49	Domain Formation in Sphingomyelin/Cholesterol Mixed Membranes Studied by Spin-Label Electron Spin Resonance Spectroscopyâ€. Biochemistry, 2005, 44, 4911-4918.	1.2	81
50	Solubilization of Phospholipid Bilayers by Surfactants Belonging to the Triton X Series: Effect of Polar Group Size. Journal of Colloid and Interface Science, 1996, 178, 156-159.	5.0	80
51	Vesicle Membrane Fusion Induced by the Concerted Activities of Sphingomyelinase and Phospholipase C. Journal of Biological Chemistry, 1998, 273, 22977-22982.	1.6	80
52	Lysis and reassembly of sonicated lecithin vesicles in the presence of triton X-100. FEBS Letters, 1981, 123, 200-204.	1.3	79
53	Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 12-19.	1.4	79
54	Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion. Biophysical Journal, 1996, 70, 2299-2306.	0.2	78

#	Article	IF	CITATIONS
55	Glycophorin as a Receptor for Escherichia coliα-Hemolysin in Erythrocytes. Journal of Biological Chemistry, 2001, 276, 12513-12519.	1.6	76
56	Dihydrosphingomyelin Impairs HIV-1 Infection by Rigidifying Liquid-Ordered Membrane Domains. Chemistry and Biology, 2010, 17, 766-775.	6.2	76
57	Origin of the Lag Period in the Phospholipase C Cleavage of Phospholipids in Membranes. Concomitant Vesicle Aggregation and Enzyme Activationâ€. Biochemistry, 1996, 35, 15183-15187.	1.2	74
58	Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Letters, 1997, 410, 338-342.	1.3	74
59	Spectroscopic techniques in the study of membrane solubilization, reconstitution and permeabilization by detergents. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1508, 51-68.	1.4	74
60	Triton X-100-Resistant Bilayers:Â Effect of Lipid Composition and Relevance to the Raft Phenomenon. Langmuir, 2002, 18, 2828-2835.	1.6	74
61	Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO Journal, 2012, 31, 4535-4546.	3.5	74
62	Liposome destabilization induced by the HIV-1 fusion peptide Effect of a single amino acid substitution. FEBS Letters, 1995, 362, 243-246.	1.3	72
63	Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers. Biophysical Journal, 1996, 71, 1869-1876.	0.2	69
64	Increase in size of sonicated phospholipid vesicles in the presence of detergents. Journal of Membrane Biology, 1982, 67, 55-62.	1.0	67
65	Human Atg8-cardiolipin interactions in mitophagy: Specific properties of LC3B, GABARAPL2 and GABARAP. Autophagy, 2016, 12, 2386-2403.	4.3	67
66	A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies. Chemical Communications, 2017, 53, 945-948.	2.2	67
67	Effective detergent/lipid ratios in the solubilization of phosphatidylcholine vesicles by Triton X-100. FEBS Letters, 1992, 302, 138-140.	1.3	65
68	Membrane Restructuring by Bordetella pertussis Adenylate Cyclase Toxin, a Member of the RTX Toxin Family. Journal of Bacteriology, 2004, 186, 3760-3765.	1.0	65
69	Sphingosine Increases the Permeability of Model and Cell Membranes. Biophysical Journal, 2006, 90, 4085-4092.	0.2	65
70	Binding of β-Amyloid (1–42) Peptide to Negatively Charged Phospholipid Membranes in the Liquid-Ordered State: Modeling and Experimental Studies. Biophysical Journal, 2012, 103, 453-463.	0.2	65
71	"Rafts― A nickname for putative transient nanodomains. Chemistry and Physics of Lipids, 2019, 218, 34-39.	1.5	65
72	Protein-lipid interactions. FEBS Letters, 1979, 98, 224-228.	1.3	63

#	Article	IF	CITATIONS
73	A study of phospholipid phosphate groups in model membranes by Fourier transform infrared spectroscopy. Faraday Discussions of the Chemical Society, 1986, 81, 117-126.	2.2	63
74	Purification and Properties of TrwB, a Hexameric, ATP-binding Integral Membrane Protein Essential for R388 Plasmid Conjugation. Journal of Biological Chemistry, 2002, 277, 46456-46462.	1.6	63
75	Effect of Single Chain Lipids on Phospholipase C-Promoted Vesicle Fusion. A Test for the Stalk Hypothesis of Membrane Fusion. Biochemistry, 1998, 37, 3901-3908.	1.2	62
76	Detergent Effects on Membranes at Subsolubilizing Concentrations: Transmembrane Lipid Motion, Bilayer Permeabilization, and Vesicle Lysis/Reassembly Are Independent Phenomena. Langmuir, 2010, 26, 7307-7313.	1.6	61
77	Sphingomyelinase cleavage of sphingomyelin in pure and mixed lipid membranes. Influence of the physical state of the sphingolipid. Chemistry and Physics of Lipids, 2002, 114, 11-20.	1.5	60
78	Liposomes Containing Sphingomyelin and Cholesterol: Detergent Solubilisation and Infrared Spectroscopic Studies. Journal of Liposome Research, 1999, 9, 247-260.	1.5	59
79	Coexistence of Immiscible Mixtures of Palmitoylsphingomyelin and Palmitoylceramide in Monolayers and Bilayers. Biophysical Journal, 2009, 97, 2717-2726.	0.2	59
80	Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment. Molecular Microbiology, 1999, 31, 1013-1024.	1.2	58
81	Membrane Fusion Induced by Phospholipase C and Sphingomyelinases. Bioscience Reports, 2000, 20, 443-463.	1.1	58
82	Leaky Vesicle Fusion Induced by Phosphatidylinositol-Specific Phospholipase C: Observation of Mixing of Vesicular Inner Monolayersâ€. Biochemistry, 2000, 39, 14012-14018.	1.2	56
83	Modulation of PI-Specific Phospholipase C by Membrane Curvature and Molecular Order. Biochemistry, 2005, 44, 11592-11600.	1.2	56
84	The Calcium-binding C-terminal Domain of Escherichia coli α-Hemolysin Is a Major Determinant in the Surface-active Properties of the Protein. Journal of Biological Chemistry, 2007, 282, 11827-11835.	1.6	56
85	Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: A glimpse into sphingolipid complexity. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 456-464.	1.4	56
86	Palmitoylcarnitine, a surface-active metabolite. FEBS Letters, 1996, 390, 1-5.	1.3	55
87	Ceramide-Enriched Membrane Domains in Red Blood Cells and the Mechanism of Sphingomyelinase-Induced Hotâ~Cold Hemolysis. Biochemistry, 2008, 47, 11222-11230.	1.2	55
88	Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Progress in Lipid Research, 2012, 51, 238-266.	5.3	55
89	Phospholipase C-promoted membrane fusion. Retroinhibition by the end-product diacylglycerol. Biochemistry, 1993, 32, 1054-1058.	1.2	54
90	Lipid Geometry and Bilayer Curvature Modulate LC3/GABARAP-Mediated Model Autophagosomal Elongation. Biophysical Journal, 2016, 110, 411-422.	0.2	54

#	Article	IF	CITATIONS
91	Lipids Favoring Inverted Phase Enhance the Ability of Aerolysin To Permeabilize Liposome Bilayersâ€. Biochemistry, 2000, 39, 14019-14024.	1.2	53
92	An infrared spectroscopic study of β-galactosidase structure in aqueous solutions. FEBS Letters, 1989, 252, 118-120.	1.3	52
93	Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles. Biophysical Journal, 2012, 102, 278-286.	0.2	52
94	α-Haemolysin fromE. colipurification and self-aggregation properties. FEBS Letters, 1991, 280, 195-198.	1.3	51
95	Biophysics (and sociology) of ceramides Biochemical Society Symposia, 2005, 72, 177-188.	2.7	51
96	Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer's disease. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1680-1692.	1.4	50
97	Calcium-dependent conformation of E. coli α-haemolysin. Implications for the mechanism of membrane insertion and lysis. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1368, 225-234.	1.4	49
98	Kinetic studies on the interaction of phosphatidylcholine liposomes with Triton X-100. Biochimica Et Biophysica Acta - Biomembranes, 1987, 902, 237-246.	1.4	48
99	Triton X-100 Partitioning into Sphingomyelin Bilayers at Subsolubilizing Detergent Concentrations: Effect of Lipid Phase and a Comparison with Dipalmitoylphosphatidylcholine. Biophysical Journal, 2007, 93, 3504-3514.	0.2	46
100	Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids and Surfaces B: Biointerfaces, 2015, 135, 18-26.	2.5	46
101	The Membrane-Perturbing Properties of Palmitoyl-Coenzyme A and Palmitoylcarnitine. A Comparative Study. Biochemistry, 1995, 34, 10400-10405.	1.2	45
102	A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nature Communications, 2020, 11, 4027.	5.8	45
103	A pathway for the thermal destabilization of bacteriorhodopsin. FEBS Letters, 1995, 367, 297-300.	1.3	44
104	Dual Inhibitory Effect of Gangliosides on Phospholipase C-Promoted Fusion of Lipidic Vesiclesâ€. Biochemistry, 1996, 35, 7506-7513.	1.2	44
105	A Receptor-binding Region in Escherichia coli α-Haemolysin. Journal of Biological Chemistry, 2003, 278, 19159-19163.	1.6	44
106	Biophysical properties of sphingosine, ceramides and other simple sphingolipids. Biochemical Society Transactions, 2014, 42, 1401-1408.	1.6	44
107	N-Nervonoylsphingomyelin (C24:1) Prevents Lateral Heterogeneity in Cholesterol-Containing Membranes. Biophysical Journal, 2014, 106, 2606-2616.	0.2	44
108	Time-resolved and equilibrium measurements of the effects of poly(ethylene glycol) on small unilamellar phospholipid vesicles. Biochemistry, 1993, 32, 3708-3713.	1.2	43

#	Article	IF	CITATIONS
109	Infrared evidence of a β-hairpin peptide structure in solution. FEBS Letters, 1996, 384, 35-37.	1.3	42
110	Multiple stages of detergent-erythrocyte membrane interaction—A spin label study. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 164-170.	1.4	42
111	Biophysical Properties of Novel 1-Deoxy-(Dihydro)ceramides Occurring in Mammalian Cells. Biophysical Journal, 2014, 107, 2850-2859.	0.2	42
112	Non-permanent proteins in membranes: when proteins come as visitors (Review). Molecular Membrane Biology, 2002, 19, 237-245.	2.0	41
113	Membrane Organization and Ionization Behavior of the Minor but Crucial Lipid Ceramide-1-Phosphate. Biophysical Journal, 2008, 94, 4320-4330.	0.2	41
114	Cholesterol Displaces Palmitoylceramide from Its Tight Packing with Palmitoylsphingomyelin in the Absence of a Liquid-Disordered Phase. Biophysical Journal, 2010, 99, 1119-1128.	0.2	41
115	Lamellar Gel (Lβ) Phases of Ternary Lipid Composition Containing Ceramide and Cholesterol. Biophysical Journal, 2014, 106, 621-630.	0.2	41
116	Protein-lipid interactions and differential scanning calorimetric studies of bacteriorhodopsin reconstituted lipid-water systems. Biochimica Et Biophysica Acta - Biomembranes, 1982, 689, 283-289.	1.4	39
117	Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers. FEBS Letters, 1993, 330, 129-132.	1.3	39
118	An assessment of the biochemical applications of the non-ionic surfactant Hecameg. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1193, 301-306.	1.4	38
119	Purification of Escherichia coli Pro-Haemolysin, and a Comparison with the Properties of Mature alpha-haemolysin. FEBS Journal, 1996, 238, 418-422.	0.2	38
120	Reversible Denaturation, Self-Aggregation, and Membrane Activity ofEscherichiacoliα-Hemolysin, a Protein Stable in 6 M Ureaâ€. Biochemistry, 1998, 37, 6387-6393.	1.2	36
121	Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 153-164.	1.4	36
122	Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge. Scientific Reports, 2017, 7, 15614.	1.6	36
123	Structural changes induced by Triton X-100 on sonicated phosphatidylcholine liposomes. FEBS Journal, 1988, 173, 585-588.	0.2	35
124	Differential penetration of fatty acyl-coenzyme A and fatty acylcarnitines into phospholipid monolayers. FEBS Letters, 1995, 357, 75-78.	1.3	34
125	Membrane Fusion Induced by the Catalytic Activity of a Phospholipase C/Sphingomyelinase fromListeria monocytogenesâ€. Biochemistry, 2004, 43, 3688-3695.	1.2	34
126	Detergent solubilization of phosphatidylcholine bilayers in the fluid state: Influence of the acyl chain structure. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 190-196.	1.4	34

#	Article	IF	CITATIONS
127	Atomic Force Microscopy Characterization of Palmitoylceramide and Cholesterol Effects on Phospholipid Bilayers: A Topographic and Nanomechanical Study. Langmuir, 2015, 31, 3135-3145.	1.6	34
128	Poly(ethylene glycol)-lipid conjugates inhibit phospholipase C-induced lipid hydrolysis, liposome aggregation and fusion through independent mechanisms. FEBS Letters, 1997, 411, 281-286.	1.3	33
129	Mixed Membranes of Sphingolipids and Glycerolipids As Studied by Spin-Label ESR Spectroscopy. A Search for Domain Formation. Biochemistry, 2000, 39, 9876-9883.	1.2	33
130	Membrane Insertion of Escherichia coli α-Hemolysin Is Independent from Membrane Lysis. Journal of Biological Chemistry, 2006, 281, 5461-5467.	1.6	33
131	Inhibition by Gangliosides of Bacillus cereus Phospholipase C Activity Against Monolayers, Micelles and Bilayer Vesicles. FEBS Journal, 1996, 239, 105-110.	0.2	32
132	Membrane Fusion Induced by the HIV Type 1 Fusion Peptide: Modulation by Factors Affecting Glycoprotein 41 Activity and Potential Anti-HIV Compounds. AIDS Research and Human Retroviruses, 1997, 13, 1203-1211.	0.5	32
133	Diacylglycerol effects on phosphatidylinositol-specific phospholipase C activity and vesicle fusion. FEBS Letters, 2001, 494, 117-120.	1.3	32
134	Combination of the anti-tumour cell ether lipid edelfosine with sterols abolishes haemolytic side effects of the drug. Journal of Chemical Biology, 2008, 1, 89-94.	2.2	32
135	Phase behavior of palmitoyl and egg sphingomyelin. Chemistry and Physics of Lipids, 2018, 213, 102-110.	1.5	32
136	The components of merocyanine-540 absorption spectra in aqueous, micellar and bilayer environments. FEBS Journal, 1992, 207, 1085-1091.	0.2	31
137	Phospholipase C Hydrolysis of Phospholipids in Bilayers of Mixed Lipid Compositionsâ€. Biochemistry, 1998, 37, 11621-11628.	1.2	31
138	Interbilayer lipid mixing induced by the human immunodeficiency virus type-1 fusion peptide on large unilamellar vesicles: the nature of the nonlamellar intermediates. Chemistry and Physics of Lipids, 1999, 103, 11-20.	1.5	31
139	Infrared spectroscopic studies of detergent-solubilized uncoupling protein from brown-adipose-tissue mitochondria. FEBS Journal, 1990, 188, 83-89.	0.2	30
140	Sphingosine-1-Phosphate as an Amphipathic Metabolite: Its Properties in Aqueous and Membrane Environments. Biophysical Journal, 2009, 97, 1398-1407.	0.2	30
141	The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates. Chemical Science, 2020, 11, 11902-11914.	3.7	30
142	Equilibrium and Kinetic Studies of the Solubilization of Phospholipidâ^'Cholesterol Bilayers by C12E8. The Influence of the Lipid Phase Structure. Langmuir, 2000, 16, 1960-1968.	1.6	29
143	Accumulated Bending Energy Elicits Neutral Sphingomyelinase Activity inÂHuman Red Blood Cells. Biophysical Journal, 2012, 102, 2077-2085.	0.2	29
144	Lipid Bilayers in the Gel Phase Become Saturated by Triton X-100 at Lower Surfactant Concentrations Than Those in the Fluid Phase. Biophysical Journal, 2012, 102, 2510-2516.	0.2	29

#	Article	IF	CITATIONS
145	Two-Photon Laurdan Studies of the Ternary Lipid Mixture DOPC:SM:Cholesterol Reveal a Single Liquid Phase at Sphingomyelin:Cholesterol Ratios Lower Than 1. Langmuir, 2015, 31, 2808-2817.	1.6	29
146	Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum (calcium(2+), magnesium(2+) ion)-activated ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Biochemistry, 1979, 18, 5892-5902.	1.2	28
147	Subunit III of Cytochrome c Oxidase Influences the Conformation of Subunits I and II: An Infrared Study. Biochemistry, 1995, 34, 13565-13569.	1.2	28
148	Role of the Transmembrane Domain in the Stability of TrwB, an Integral Protein Involved in Bacterial Conjugation. Journal of Biological Chemistry, 2004, 279, 10955-10961.	1.6	28
149	Surface-active properties of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine). Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1855-1860.	1.4	28
150	Methionine Adenosyltransferase α-Helix Structure Unfolds at Lower Temperatures than β-Sheet: A 2D-IR Study. Biophysical Journal, 2004, 86, 3951-3958.	0.2	27
151	Ether- versus Ester-Linked Phospholipid Bilayers Containing either Linear or Branched Apolar Chains. Biophysical Journal, 2014, 107, 1364-1374.	0.2	27
152	Phospholipase-C-promoted liposome fusion. Biochemical Society Transactions, 1994, 22, 839-844.	1.6	26
153	Changes in Membrane Organization upon Spontaneous Insertion of 2-Hydroxylated Unsaturated Fatty Acids in the Lipid Bilayer. Langmuir, 2014, 30, 2117-2128.	1.6	26
154	The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: Biophysical and physiological implications. Chemistry and Physics of Lipids, 2018, 217, 29-34.	1.5	26
155	Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells. Scientific Reports, 2018, 8, 7456.	1.6	26
156	Effect of detergents and fusogenic lipids on phospholipid phase transitions. Journal of Membrane Biology, 1983, 71, 183-187.	1.0	25
157	The transmembrane domain provides nucleotide binding specificity to the bacterial conjugation protein TrwB. FEBS Letters, 2006, 580, 3075-3082.	1.3	25
158	The European Lipidomics Initiative: Enabling Technologies. Methods in Enzymology, 2007, 432, 213-232.	0.4	25
159	Unexpected wide substrate specificity of C. perfringens α-toxin phospholipase C. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2618-2627.	1.4	25
160	Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions. Methods in Molecular Biology, 2010, 606, 105-114.	0.4	25
161	Implication of ceramide, ceramide 1-phosphate and sphingosine 1-phosphate in tumorigenesis. Translational Oncogenomics, 2008, 3, 81-98.	1.7	25
162	LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs. Autophagy, 2022, 18, 2985-3003.	4.3	25

#	Article	IF	CITATIONS
163	Leakage-free membrane fusion induced by the hydrolytic activity of PlcHR2, a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2365-2372.	1.4	24
164	Phospholipase C and sphingomyelinase activities of the Clostridium perfringens α-toxin. Chemistry and Physics of Lipids, 2009, 159, 51-57.	1.5	24
165	A Cholesterol Recognition Motif in Human Phospholipid Scramblase 1. Biophysical Journal, 2014, 107, 1383-1392.	0.2	24
166	Does Ceramide Form Channels? The Ceramide-Induced Membrane Permeabilization Mechanism. Biophysical Journal, 2017, 113, 860-868.	0.2	24
167	Interaction of wheat αâ€ŧhionin with large unilamellar vesicles. Protein Science, 1998, 7, 2567-2577.	3.1	23
168	TrwD, the Hexameric Traffic ATPase Encoded by Plasmid R388, Induces Membrane Destabilization and Hemifusion of Lipid Vesicles. Journal of Bacteriology, 2002, 184, 1661-1668.	1.0	23
169	Surfactant Effects of Chlorpromazine and Imipramine on Lipid Bilayers Containing Sphingomyelin and Cholesterol. Journal of Colloid and Interface Science, 2002, 256, 284-289.	5.0	23
170	Solvation and Hydration of the Ceramide Headgroup in a Non-Polar Solution. Journal of Physical Chemistry B, 2015, 119, 128-139.	1.2	23
171	The physical state of ubiquinone-10, in pure form and incorporated into phospholipid bilayers. A Fourier-transform infrared spectroscopic study. FEBS Journal, 1992, 204, 1125-1130.	0.2	22
172	An Infrared Investigation of Palmitoyl-Coenzyme A and Palmitoylcarnitine Interaction with Perdeuterated-Chain Phospholipid Bilayers. FEBS Journal, 1995, 231, 199-203.	0.2	22
173	Insights into Sphingolipid Miscibility: Separate Observation of Sphingomyelin and Ceramide N-Acyl Chain Melting. Biophysical Journal, 2012, 103, 2465-2474.	0.2	22
174	Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 797-804.	1.4	22
175	Calcium-dependent conformational changes of membrane-bound Ebola fusion peptide drive vesicle fusion. FEBS Letters, 2003, 535, 23-28.	1.3	21
176	Cholesterol reverts Triton Xâ€100 preferential solubilization of sphingomyelin over phosphatidylcholine: A ³¹ Pâ€NMR study. FEBS Letters, 2009, 583, 2859-2864.	1.3	21
177	End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 59-64.	1.4	21
178	The transmembrane domain of the T4SS coupling protein TrwB and its role in protein–protein interactions. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2015-2025.	1.4	21
179	Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids. Biophysical Journal, 2014, 106, 2577-2584.	0.2	21
180	A Computational Module Assembled from Different Protease Family Motifs Identifies PI PLC from Bacillus cereus as a Putative Prolyl Peptidase with a Serine Protease Scaffold. PLoS ONE, 2013, 8, e70923.	1.1	21

#	Article	IF	CITATIONS
181	The Binding of Divalent Cations to Escherichia colialpha-Haemolysin. FEBS Journal, 1995, 228, 39-44.	0.2	20
182	Quantitation of cholesterol incorporation into extruded lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1735-1738.	1.4	20
183	Effects of bilayer composition and physical properties on the phospholipase C and sphingomyelinase activities of Clostridium perfringens α-toxin. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 279-286.	1.4	20
184	Ceramide-Induced Lamellar Gel Phases in Fluid Cell Lipid Extracts. Langmuir, 2016, 32, 9053-9063.	1.6	20
185	Coating Graphene Oxide with Lipid Bilayers Greatly Decreases Its Hemolytic Properties. Langmuir, 2017, 33, 8181-8191.	1.6	20
186	Binding of Triton X-100 to bovine serum albumin as studied by surface tension measurements. Journal of Proteomics, 1991, 22, 129-133.	2.4	19
187	Use of Merocyanine 540 as an Optical Probe in the Study of Membrane-Surfactant Interactions. The Journal of Physical Chemistry, 1994, 98, 10650-10654.	2.9	18
188	Liposome aggregation induced by poly(ethylene glycol). Rapid kinetic studies. Colloids and Surfaces B: Biointerfaces, 1995, 3, 263-270.	2.5	18
189	Interaction of Phospholipases C and Sphingomyelinase with Liposomes. Methods in Enzymology, 2003, 372, 3-19.	0.4	18
190	Interdomain Ca2+ effects in Escherichia coli α-haemolysin: Ca2+ binding to the C-terminal domain stabilizes both C- and N-terminal domains. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1225-1233.	1.4	18
191	Membrane insertion stabilizes the structure of TrwB, the R388 conjugative plasmid coupling protein. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1032-1039.	1.4	18
192	Multiple phospholipid substrates of phospholipase C/sphingomyelinase HR2 from Pseudomonas aeruginosa. Chemistry and Physics of Lipids, 2011, 164, 78-82.	1.5	18
193	Phospholipid oxidation catalyzed by cytochrome c in liposomes. Lipids and Lipid Metabolism, 1985, 835, 549-556.	2.6	17
194	The interaction of Triton X-100 with purple membranes. Detergent binding, spectral changes and membrane solubilization. FEBS Journal, 1990, 188, 673-678.	0.2	17
195	Heparin-binding capacity of the HIV-1 NEF-protein allows one-step purification and biochemical characterization. Journal of Virological Methods, 1996, 60, 89-101.	1.0	17
196	Interaction of electrically neutral and cationic forms of imipramine with liposome and erythrocyte membranes. International Journal of Pharmaceutics, 2004, 279, 51-58.	2.6	17
197	Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2160-2169.	1.4	17
198	Effects of chronic and acute lead treatments on the biophysical properties of erythrocyte membranes, and a comparison with model membranes. FEBS Open Bio, 2013, 3, 212-217.	1.0	17

#	Article	IF	CITATIONS
199	Cholesterol–Ceramide Interactions in Phospholipid and Sphingolipid Bilayers As Observed by Positron Annihilation Lifetime Spectroscopy and Molecular Dynamics Simulations. Langmuir, 2016, 32, 5434-5444.	1.6	17
200	Complex Effects of 24:1 Sphingolipids in Membranes Containing Dioleoylphosphatidylcholine and Cholesterol. Langmuir, 2017, 33, 5545-5554.	1.6	17
201	Omega-3 polyunsaturated fatty acids do not fluidify bilayers in the liquid-crystalline state. Scientific Reports, 2018, 8, 16240.	1.6	17
202	Towards the in vitro reconstitution of caveolae. Asymmetric incorporation of glycosylphosphatidylinositol (GPI) and gangliosides into liposomal membranes. FEBS Letters, 1999, 457, 71-74.	1.3	16
203	pH-Dependent Effects of Chlorpromazine on Liposomes and Erythrocyte Membranes. Journal of Liposome Research, 2003, 13, 147-155.	1.5	16
204	Analysis of confiscated fireworks using Raman spectroscopy assisted with SEMâ€EDS and FTIR. Journal of Raman Spectroscopy, 2011, 42, 2000-2005.	1.2	16
205	The C-terminal transmembrane domain of human phospholipid scramblase 1 is essential for the protein flip-flop activity and Ca2+-binding. Journal of Membrane Biology, 2014, 247, 155-165.	1.0	15
206	Type I phosphatidylinositol 4â€phosphate 5â€kinase homo―and heterodimerization determines its membrane localization and activity. FASEB Journal, 2015, 29, 2371-2385.	0.2	15
207	Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles. Chemistry and Physics of Lipids, 2015, 191, 84-90.	1.5	15
208	Membrane-assisted viral DNA ejection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 664-672.	1.1	15
209	On the mechanism of bacteriorhodopsin solubilization by surfactants. Archives of Biochemistry and Biophysics, 1991, 291, 300-306.	1.4	14
210	The Critical Micellar Concentrations of Fatty Acyl Coenzyme A and Fatty Acyl Carnitines. Journal of Colloid and Interface Science, 1993, 161, 343-346.	5.0	14
211	Chapter 13 Infrared spectroscopic studies of lipid-protein interactions in membranes. New Comprehensive Biochemistry, 1993, , 321-349.	0.1	14
212	Sphingolipids (Galactosylceramide and Sulfatide) in Lamellarâ^'Hexagonal Phospholipid Phase Transitions and in Membrane Fusionâ€. Langmuir, 2000, 16, 8958-8963.	1.6	14
213	A two‒dimensional IR spectroscopic (2D‒IR) simulation of protein conformational changes. Spectroscopy, 2004, 18, 49-58.	0.8	14
214	Fast and slow biomembrane solubilizing detergents: Insights into their mechanism of action. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110430.	2.5	14
215	Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol. Langmuir, 2019, 35, 5305-5315.	1.6	14
216	Exploring polar headgroup interactions between sphingomyelin and ceramide with infrared spectroscopy. Scientific Reports, 2020, 10, 17606.	1.6	14

#	Article	IF	CITATIONS
217	Membrane Solubilization by Detergents, and Detergent/Protein Ratios. Biochemical Society Transactions, 1979, 7, 148-150.	1.6	13
218	Phospholipase cleavage of glycosylphosphatidylinositol reconstituted in liposomal membranes. FEBS Letters, 1998, 432, 150-154.	1.3	13
219	Purification and Characterization of Insulin-Mimetic Inositol Phosphoglycan-Like Molecules From Grass Pea (Lathyrus sativus) Seeds. Molecular Medicine, 2001, 7, 454-460.	1.9	13
220	A Bacterial TrwC Relaxase Domain Contains a Thermally Stable α-Helical Core. Journal of Bacteriology, 2003, 185, 4226-4232.	1.0	13
221	<i>cis</i> - versus <i>trans</i> -Ceramides: Effects of the Double Bond on Conformation and H-Bonding Interactions. Journal of Physical Chemistry B, 2009, 113, 15249-15255.	1.2	13
222	Imaging the early stages of phospholipase C/sphingomyelinase activity on vesicles containing coexisting ordered-disordered and gel-fluid domains. Journal of Lipid Research, 2011, 52, 635-645.	2.0	13
223	Early stages of LDL oxidation: apolipoprotein B structural changes monitored by infrared spectroscopy. Journal of Lipid Research, 2001, 42, 778-782.	2.0	13
224	A 2D-IR study of heat- and [(13)C]urea-induced denaturation of sarcoplasmic reticulum Ca(2+)-ATPase Acta Biochimica Polonica, 2005, 52, 477-483.	0.3	13
225	His-859 Is an Essential Residue for the Activity and pH Dependence of Escherichia coli RTX Toxin α-Hemolysin. Journal of Biological Chemistry, 2002, 277, 23223-23229.	1.6	12
226	Double-tailed lipid modification as a promising candidate for oligonucleotide delivery in mammalian cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4872-4884.	1.1	12
227	Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 388-397.	1.4	12
228	Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells. Scientific Reports, 2015, 5, 13774.	1.6	12
229	The interaction of Aβ42 peptide in monomer, oligomer or fibril forms with sphingomyelin/cholesterol/ganglioside bilayers. International Journal of Biological Macromolecules, 2021, 168, 611-619.	3.6	12
230	Ceramide-Induced Transbilayer (Flip-Flop) Lipid Movement in Membranes. Methods in Molecular Biology, 2009, 462, 1-11.	0.4	12
231	Early and delayed stages in the solubilization of purple membrane by a polyoxyethylenic surfactant. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1196, 76-80.	1.4	11
232	High-Melting Lipid Mixtures and the Origin of Detergent-Resistant Membranes Studied with Temperature-Solubilization Diagrams. Biophysical Journal, 2014, 107, 2828-2837.	0.2	11
233	Subcellular location of the coupling protein TrwB and the role of its transmembrane domain. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 223-230.	1.4	11
234	Low pH Modulates the Macroorganization and Thermal Stability of PSII Supercomplexes in Grana Membranes. Biophysical Journal, 2015, 108, 844-853.	0.2	11

#	Article	IF	CITATIONS
235	Surfactant enhancement of polyethyleneglycol-induced cell fusion. FEBS Letters, 1989, 259, 149-152.	1.3	10
236	Real-time measurements of chemically-induced membrane fusion in cell monolayers, using a resonance energy transfer method. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 175-180.	1.4	10
237	Probing Protein Conformation by Infrared Spectroscopy. Biochemical Society Transactions, 1994, 22, 380S-380S.	1.6	10
238	Alkanes are not innocuous vehicles for hydrophobic reagents in membrane studies. Chemistry and Physics of Lipids, 2006, 139, 107-114.	1.5	10
239	Lipidomic profile of GM95 cell death induced by Clostridium perfringens alpha-toxin. Chemistry and Physics of Lipids, 2017, 203, 54-70.	1.5	10
240	Phase-selective staining of model and cell membranes, lipid droplets and lipoproteins with fluorescent solvatochromic pyrene probes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183470.	1.4	10
241	The Binding of Divalent Cations to Escherichia coli alpha-Haemolysin. FEBS Journal, 1995, 228, 39-44.	0.2	10
242	Lipid-protein interaction. The incorporation of myelin proteolipid apoprotein into phosphatidylcholine bilayers. FEBS Journal, 1988, 174, 641-646.	0.2	9
243	The uncoupling protein from brown adipose tissue mitochondria. The environment of the tryptophan residues as revealed by quenching of the intrinsic fluorescence. FEBS Journal, 1992, 210, 893-899.	0.2	9
244	Phospholipase Cleavage ofD- andL-chiro-Glycosylphosphoinositides Asymmetrically Incorporated into Liposomal Membranes. Chemistry - A European Journal, 2006, 12, 1513-1528.	1.7	9
245	Sphingosine induces the aggregation of imine-containing peroxidized vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2071-2077.	1.4	9
246	End-Product Diacylglycerol Enhances the Activity of PI-PLC through Changes in Membrane Domain Structure. Biophysical Journal, 2015, 108, 1672-1682.	0.2	9
247	Lamellar Phases Composed of Phospholipid, Cholesterol, and Ceramide, as Studied by 2H NMR. Biophysical Journal, 2019, 117, 296-306.	0.2	9
248	Mixing brain cerebrosides with brain ceramides, cholesterol and phospholipids. Scientific Reports, 2019, 9, 13326.	1.6	9
249	C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes. Scientific Reports, 2020, 10, 14085.	1.6	9
250	The Binding of Aβ42 Peptide Monomers to Sphingomyelin/Cholesterol/Ganglioside Bilayers Assayed by Density Gradient Ultracentrifugation. International Journal of Molecular Sciences, 2020, 21, 1674.	1.8	9
251	Photoacoustic effect applied on model membranes and living cells: direct observation with multiphoton excitation microscopy and long-term viability analysis. Scientific Reports, 2020, 10, 299.	1.6	9
252	Are these liquids explosive? Forensic analysis of confiscated indoor fireworks. Analytical and Bioanalytical Chemistry, 2011, 400, 3065-3071.	1.9	8

#	Article	IF	CITATIONS
253	Deletion of a single helix from the transmembrane domain causes large changes in membrane insertion properties and secondary structure of the bacterial conjugation protein TrwB. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3158-3166.	1.4	8
254	In situ synthesis of fluorescent membrane lipids (ceramides) using click chemistry. Journal of Chemical Biology, 2012, 5, 119-123.	2.2	8
255	Fluorescent Polyene Ceramide Analogues as Membrane Probes. Langmuir, 2015, 31, 2484-2492.	1.6	8
256	The conformation of human phospholipid scramblase 1, as studied by infrared spectroscopy. Effects of calcium and detergent. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1019-1028.	1.4	8
257	Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells. International Journal of Molecular Sciences, 2020, 21, 2643.	1.8	8
258	Dipeptidyl peptidase-IV inhibitors used in type-2 diabetes inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. F1000Research, 0, 2, 286.	0.8	8
259	Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients. International Journal of Molecular Sciences, 2022, 23, 1920.	1.8	8
260	Tryptophan fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers. Archives of Biochemistry and Biophysics, 1987, 257, 285-292.	1.4	7
261	Electrokinetic charge of the anesthetic-induced bR480 and bR380 spectral forms of bacteriorhodopsin. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 331-337.	1.4	7
262	Phosphorylation of glycosyl-phosphatidylinositol by phosphatidylinositol 3-kinase changes its properties as a substrate for phospholipases. FEBS Letters, 2005, 579, 59-65.	1.3	7
263	Recruitment of a phospholipase C/sphingomyelinase into non-lamellar lipid droplets during hydrolysis of lipid bilayers. Chemistry and Physics of Lipids, 2013, 166, 12-17.	1.5	7
264	Histones and DNA Compete for Binding Polyphosphoinositides in Bilayers. Biophysical Journal, 2014, 106, 1092-1100.	0.2	7
265	Histones Cause Aggregation and Fusion of Lipid Vesicles Containing Phosphatidylinositol-4-Phosphate. Biophysical Journal, 2015, 108, 863-871.	0.2	7
266	Lipids that determine detergent resistance of MDCK cell membrane fractions. Chemistry and Physics of Lipids, 2015, 191, 68-74.	1.5	7
267	Thermally-induced aggregation and fusion of protein-free lipid vesicles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 545-552.	2.5	7
268	Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms. Bioorganic and Medicinal Chemistry, 2017, 25, 175-186.	1.4	7
269	β-Amyloid (1–42) peptide adsorbs but does not insert into ganglioside-containing phospholipid membranes in the liquid-disordered state: modelling and experimental studies. International Journal of Biological Macromolecules, 2020, 164, 2651-2658.	3.6	7
270	The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. F1000Research, 2013, 2, 286.	0.8	7

#	Article	IF	CITATIONS
271	A comparative study of the effect of various detergents on the structure and function of sarcoplasmic reticulum vesicles. Molecular and Cellular Biochemistry, 1982, 49, 113-8.	1.4	6
272	The Turbidity of Cell Nuclei in Suspension: A Complex Case of Light Scattering. Journal of Colloid and Interface Science, 1996, 177, 9-13.	5.0	6
273	Asp-863 is a key residue for calcium-dependent activity ofEscherichia coliRTX toxin α-haemolysin. FEBS Letters, 2003, 546, 271-275.	1.3	6
274	Parâ€fjâ€f1 and Parâ€fjâ€f2, the two major allergens in <i>Parietariaâ€fjudaica</i> , bind preferentially to monoacylated negative lipids. FEBS Journal, 2009, 276, 1762-1775.	2.2	6
275	Membrane binding of human phospholipid scramblase 1 cytoplasmic domain. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1785-1792.	1.4	6
276	Clearly Detectable, Kinetically Restricted Solid–Solid Phase Transition in cis-Ceramide Monolayers. Langmuir, 2018, 34, 11749-11758.	1.6	6
277	CHO/LYâ€B cell growth under limiting sphingolipid supply: Correlation between lipid composition and biophysical properties of sphingolipidâ€restricted cell membranes. FASEB Journal, 2021, 35, e21657.	0.2	6
278	Ceramide enhances binding of LC3/GABARAP autophagy proteins to cardiolipin-containing membranes. International Journal of Biological Macromolecules, 2022, 217, 748-760.	3.6	6
279	The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition. Chemistry and Physics of Lipids, 2013, 167-168, 57-61.	1.5	5
280	The interaction of lipid-liganded gold clusters (Aurora â,,¢) with lipid bilayers. Chemistry and Physics of Lipids, 2019, 218, 40-46.	1.5	5
281	Lipid Self-Assemblies under the Atomic Force Microscope. International Journal of Molecular Sciences, 2021, 22, 10085.	1.8	5
282	Selective Solubilization of Mitochondrial Inner-Membrane Components by Triton X-100. Biochemical Society Transactions, 1979, 7, 150-152.	1.6	4
283	Calorimetric assay of gramicidin A in the presence of surfactants and phospholipids. Journal of Proteomics, 1985, 11, 341-345.	2.4	4
284	Kinetics of purple membrane dark-adaptation in the presence of Triton X-100. Archives of Biochemistry and Biophysics, 1990, 282, 239-243.	1.4	4
285	Compartmentalization of ceramide signaling: physical foundations and biological effects. Journal of Cellular Physiology, 2000, 184, 285-300.	2.0	4
286	Infrared Spectroscopic Studies of Membrane Lipids. , 1997, , 229-242.		4
287	Effect of Asp85 replacement by Thr on the conformation, surface electric properties and stability of bacteriorhodopsin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209, 193-200.	2.3	3
288	Calcium inhibits diacylglycerol uptake by serum albumin. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 701-707.	1.4	3

#	Article	IF	CITATIONS
289	Lipids, a Missing Link in Prion Propagation. Chemistry and Biology, 2011, 18, 1345-1346.	6.2	3
290	Membrane Partitioning of the Pore-Forming Domain of Colicin A. Role of the Hydrophobic Helical Hairpin. Biophysical Journal, 2013, 105, 1432-1443.	0.2	3
291	Polyamine-RNA-membrane interactions: From the past to the future in biology. Colloids and Surfaces B: Biointerfaces, 2017, 155, 173-181.	2.5	3
292	Two-Dimensional Infrared Correlation Spectroscopy. , 2006, , 73-88.		3
293	Bacteriophage PRD1 as a nanoscaffold for drug loading. Nanoscale, 2021, 13, 19875-19883.	2.8	3
294	Autophagy protein LC3C binding to phospholipid and interaction with lipid membranes. International Journal of Biological Macromolecules, 2022, 212, 432-441.	3.6	3
295	Effect of the non-ionic detergent triton X-100 on mitochondrial swelling. International Journal of Biochemistry & Cell Biology, 1980, 11, 507-510.	0.8	2
296	Special issue on sphingolipids. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1863.	1.4	2
297	In Vitro Techniques. , 2006, , 201-378.		2
298	Approaches to polyunsaturated sphingolipids: new conformationally restrained analogs with minimal structural modifications. Tetrahedron, 2016, 72, 605-612.	1.0	2
299	Purification and characterization of the colicin A immunity protein in detergent micelles. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2181-2192.	1.4	2
300	Surfactant-Induced Liposome Fusion: Molecular Mechanisms and Biotechnological Applications. Advances in Experimental Medicine and Biology, 1988, 238, 81-103.	0.8	2
301	Support for Spanish scientists. Nature, 1978, 274, 308-308.	13.7	1
302	Thermodynamic magnitudes of aqueous solutions of the zwitterionic surfactant CHAPS. Journal of Colloid and Interface Science, 1989, 132, 22-26.	5.0	1
303	Effect of Sublytic Concentrations of Sodium Cholate on Phospholipase C Hydrolysis of Phospholipid Bilayers. Journal of Colloid and Interface Science, 1999, 219, 163-167.	5.0	1
304	Plasma membrane effects of sphingolipid-synthesis inhibition by myriocin in CHO cells: a biophysical and lipidomic study. Scientific Reports, 2022, 12, 955.	1.6	1
305	<i>FEBS Open Bio</i> : past, present and future. FEBS Open Bio, 2021, 11, 3183-3188.	1.0	1
306	Membrane destabilization induced by the human immunodeficiency virus type-1 fusion peptide. International Journal of Peptide Research and Therapeutics, 1997, 4, 365-369.	0.1	0

#	Article	IF	CITATIONS
307	Membrane destabilization induced by the human immunodeficiency virus type-1 fusion peptide. International Journal of Peptide Research and Therapeutics, 1997, 4, 365-369.	0.1	0
308	Sphingomyelinases and Their Interaction with Membrane Lipids. , 2005, , 79-100.		0
309	Membrane insertion stabilizes TrwB, the coupling protein of the conjugative plasmid R388. Chemistry and Physics of Lipids, 2010, 163, S47.	1.5	0
310	Purification and Some Properties of E. coli Î \pm -Haemolysin. , 1991, , 155-176.		0
311	Membrane topology of the HIV-1 fusion peptide. , 1999, , 381-382.		0
312	Cholesterol and ceramide: An unlikely pair. , 2022, , 111-126.		0