
Susan S Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6081645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253, 407-414.	6.0	1,756
2	Identification of a signal for rapid export of proteins from the nucleus. Cell, 1995, 82, 463-473.	13.5	1,148
3	Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253, 414-420.	6.0	988
4	Regulation of Protein Kinases. Molecular Cell, 2004, 15, 661-675.	4.5	972
5	Protein kinases: evolution of dynamic regulatory proteins. Trends in Biochemical Sciences, 2011, 36, 65-77.	3.7	753
6	Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nature Cell Biology, 2015, 17, 678-688.	4.6	699
7	Fluorescence ratio imaging of cyclic AMP in single cells. Nature, 1991, 349, 694-697.	13.7	672
8	Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17783-17788.	3.3	632
9	Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor. Biochemistry, 1993, 32, 2154-2161.	1.2	571
10	A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biology, 2000, 2, 25-29.	4.6	474
11	Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature, 1986, 319, 407-409.	13.7	437
12	Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science, 1995, 269, 807-813.	6.0	378
13	Assembly of allosteric macromolecular switches: lessons from PKA. Nature Reviews Molecular Cell Biology, 2012, 13, 646-658.	16.1	374
14	A helix scaffold for the assembly of active protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14377-14382.	3.3	371
15	Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature, 1984, 310, 589-592.	13.7	369
16	Dynamics of cAMP-Dependent Protein Kinase. Chemical Reviews, 2001, 101, 2243-2270.	23.0	366
17	Three protein kinase structures define a common motif. Structure, 1994, 2, 345-355.	1.6	358
18	2.2 Ã refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallographica Section D: Biological Crystallography, 1993, 49, 362-365.	2.5	319

2

#	Article	IF	CITATIONS
19	Crystal Structure of a Complex Between the Catalytic and Regulatory (RIÂ) Subunits of PKA. Science, 2005, 307, 690-696.	6.0	309
20	Crystal structures of the myristylated catalytic subunit of cAMPâ€dependent protein kinase reveal open and closed conformations. Protein Science, 1993, 2, 1559-1573.	3.1	305
21	PKA-I Holoenzyme Structure Reveals a Mechanism for cAMP-Dependent Activation. Cell, 2007, 130, 1032-1043.	13.5	303
22	PKA: a portrait of protein kinase dynamics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 259-269.	1.1	269
23	cAMPâ€dependent protein kinase: Crystallographic insights into substrate recognition and phosphotransfer. Protein Science, 1994, 3, 176-187.	3.1	256
24	Identification of a Novel Protein Kinase A Anchoring Protein That Binds Both Type I and Type II Regulatory Subunits. Journal of Biological Chemistry, 1997, 272, 8057-8064.	1.6	256
25	Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1506-1510.	3.3	249
26	Dynamics-Driven Allostery in Protein Kinases. Trends in Biochemical Sciences, 2015, 40, 628-647.	3.7	237
27	Allosteric Activation of Functionally Asymmetric RAF Kinase Dimers. Cell, 2013, 154, 1036-1046.	13.5	236
28	PKA: Lessons learned after twenty years. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1271-1278.	1.1	232
29	Dynamics of signaling by PKA. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 25-37.	1.1	215
30	D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11184-11189.	3.3	212
31	A template for the protein kinase family. Trends in Biochemical Sciences, 1993, 18, 84-89.	3.7	210
32	Dynamic architecture of a protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4623-31.	3.3	205
33	The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1272-1277.	3.3	199
34	cAMP-dependent protein kinase. Model for an enzyme family. Journal of Biological Chemistry, 1989, 264, 8443-6.	1.6	198
35	Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nature Structural Biology, 2002, 9, 273-277.	9.7	192
36	The cAMP binding domain: An ancient signaling module. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 45-50.	3.3	190

#	Article	IF	CITATIONS
37	Signaling through cAMP and cAMP-dependent protein kinase: Diverse strategies for drug design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 16-26.	1.1	184
38	Dynamics connect substrate recognition to catalysis in protein kinase A. Nature Chemical Biology, 2010, 6, 821-828.	3.9	182
39	Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2517-2528.	1.8	181
40	Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell, 2020, 182, 1531-1544.e15.	13.5	177
41	A Dynamic Mechanism for AKAP Binding to RII Isoforms of cAMP-Dependent Protein Kinase. Molecular Cell, 2006, 24, 397-408.	4.5	176
42	How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor proteinâ€ŧyrosine kinase. FASEB Journal, 1995, 9, 1255-1266.	0.2	174
43	Expression of the Catalytic Subunit of cAMP-Dependent Protein Kinase in Escherichia coli. Journal of Biological Chemistry, 1989, 264, 20940-20946.	1.6	174
44	Movement of the free catalytic subunit of cAMP-dependent protein kinase into and out of the nucleus can be explained by diffusion Molecular Biology of the Cell, 1993, 4, 993-1002.	0.9	164
45	Regulation of cAMP-dependent Protein Kinase Activity by Glutathionylation. Journal of Biological Chemistry, 2002, 277, 43505-43511.	1.6	159
46	Allosteric cooperativity in protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 506-511.	3.3	154
47	NH2-Terminal Targeting Motifs Direct Dual Specificity A-Kinase–anchoring Protein 1 (D-AKAP1) to Either Mitochondria or Endoplasmic Reticulum. Journal of Cell Biology, 1999, 145, 951-959.	2.3	147
48	Structure and Allostery of the PKA RIIÎ ² Tetrameric Holoenzyme. Science, 2012, 335, 712-716.	6.0	142
49	The In Situ Structure of Parkinson's Disease-Linked LRRK2. Cell, 2020, 182, 1508-1518.e16.	13.5	135
50	Inactivation of a Gαs–PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nature Cell Biology, 2015, 17, 793-803.	4.6	134
51	Molecular Basis for Regulatory Subunit Diversity in cAMP-Dependent Protein Kinase. Structure, 2001, 9, 73-82.	1.6	133
52	Dynamic Features of cAMP-dependent Protein Kinase Revealed by Apoenzyme Crystal Structure. Journal of Molecular Biology, 2003, 327, 159-171.	2.0	129
53	Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6969-6974.	3.3	129
54	Active Site Mutations Define the Pathway for the Cooperative Activation of cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1996, 35, 2934-2942.	1.2	121

#	Article	IF	CITATIONS
55	Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6067-6072.	3.3	116
56	Crystal Structure of a Polyhistidine-Tagged Recombinant Catalytic Subunit of cAMP-Dependent Protein Kinase Complexed with the Peptide Inhibitor PKI(5â^24) and Adenosineâ€. Biochemistry, 1997, 36, 4438-4448.	1.2	113
57	cAMP activation of PKA defines an ancient signaling mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 93-98.	3.3	113
58	A-kinase-interacting protein localizes protein kinase A in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 349-354.	3.3	112
59	PKR and eIF21±: Integration of Kinase Dimerization, Activation, and Substrate Docking. Cell, 2005, 122, 823-825.	13.5	112
60	PKA Type IIα Holoenzyme Reveals a Combinatorial Strategy for Isoform Diversity. Science, 2007, 318, 274-279.	6.0	103
61	Crystal Structure of the Potent Natural Product Inhibitor Balanol in Complex with the Catalytic Subunit of cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1999, 38, 2367-2376.	1.2	98
62	Structure of D-AKAP2:PKA RI Complex: Insights into AKAP Specificity and Selectivity. Structure, 2010, 18, 155-166.	1.6	98
63	Kinase Regulation by Hydrophobic Spine Assembly in Cancer. Molecular and Cellular Biology, 2015, 35, 264-276.	1.1	98
64	cAMPâ€dependent protein kinase: prototype for a family of enzymes. FASEB Journal, 1988, 2, 2677-2685.	0.2	97
65	The Chaperones Hsp90 and Cdc37 Mediate the Maturation and Stabilization of Protein Kinase C through a Conserved PXXP Motif in the C-terminal Tail*. Journal of Biological Chemistry, 2009, 284, 4921-4935.	1.6	97
66	Signaling through dynamic linkers as revealed by PKA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14231-14236.	3.3	94
67	A dynamic hydrophobic core orchestrates allostery in protein kinases. Science Advances, 2017, 3, e1600663.	4.7	89
68	Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I. Biochemistry, 1991, 30, 8710-8716.	1.2	87
69	Crosstalk between Domains in the Regulatory Subunit of cAMP-Dependent Protein Kinase: Influence of Amino Terminus on cAMP Binding and Holoenzyme Formation. Biochemistry, 1994, 33, 7485-7494.	1.2	87
70	Evolution of allostery in the cyclic nucleotide binding module. Genome Biology, 2007, 8, R264.	13.9	87
71	Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7786-7791.	3.3	86
72	AKAP1 Protects from Cerebral Ischemic Stroke by Inhibiting Drp1-Dependent Mitochondrial Fission. Journal of Neuroscience, 2018, 38, 8233-8242.	1.7	86

#	Article	IF	CITATIONS
73	Dissection of the Nucleotide and Metalâ^'Phosphate Binding Sites in cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1999, 38, 6352-6360.	1.2	84
74	Kinetic Analyses of Mutations in the Glycine-Rich Loop of cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1998, 37, 7708-7715.	1.2	82
75	Allostery through the computational microscope: cAMP activation of a canonical signalling domain. Nature Communications, 2015, 6, 7588.	5.8	81
76	Divalent metal ions influence catalysis and activeâ€site accessibility in the campâ€dependent protein kinase. Protein Science, 1993, 2, 2177-2186.	3.1	79
77	Crystal Structure of a cAMP-dependent Protein Kinase Mutant at 1.26 Ã: New Insights into the Catalytic Mechanism. Journal of Molecular Biology, 2004, 336, 473-487.	2.0	78
78	A conserved helix motif complements the protein kinase core Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10618-10622.	3.3	77
79	Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 484-491.	3.3	76
80	Structural Basis for the Regulation of Protein Kinase A by Activation Loop Phosphorylation. Journal of Biological Chemistry, 2012, 287, 14672-14680.	1.6	76
81	Phosphoryl Transfer by Protein Kinase A Is Captured in a Crystal Lattice. Journal of the American Chemical Society, 2013, 135, 4788-4798.	6.6	74
82	Global Consequences of Activation Loop Phosphorylation on Protein Kinase A. Journal of Biological Chemistry, 2010, 285, 3825-3832.	1.6	73
83	Identification of a Partially Rate-Determining Step in the Catalytic Mechanism of cAMP-Dependent Protein Kinase:  A Transient Kinetic Study Using Stopped-Flow Fluorescence Spectroscopy. Biochemistry, 1997, 36, 6717-6724.	1.2	72
84	ldentification of aspartate-184 as an essential residue in the catalytic subunit of cAMP-dependent protein kinase. Biochemistry, 1988, 27, 7356-7361.	1.2	71
85	Crystal Structures of Rlα Subunit of Cyclic Adenosine 5â€~-Monophosphate (cAMP)-Dependent Protein Kinase Complexed with (Rp)-Adenosine 3â€~,5â€~-Cyclic Monophosphothioate and (Sp)-Adenosine 3â€~,5â€~-Cyclic Monophosphothioate and (Sp)-Adenosine 3â€~,5â€~-Monophosphothioate, the Phosphothioate Analogues of cAMPâ€,‡. Biochemistry, 2004, 43, 6620-6629.	Cyclict.2	71
86	Consequences of Lysine 72 Mutation on the Phosphorylation and Activation State of cAMP-dependent Kinase. Journal of Biological Chemistry, 2005, 280, 8800-8807.	1.6	68
87	A Small Novel A-Kinase Anchoring Protein (AKAP) That Localizes Specifically Protein Kinase A-Regulatory Subunit I (PKA-RI) to the Plasma Membrane. Journal of Biological Chemistry, 2012, 287, 43789-43797.	1.6	67
88	The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGÏ^ motif in the kinase domain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14979-14988.	3.3	66
89	Dimerization/Docking Domain of the Type lα Regulatory Subunit of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1998, 273, 35048-35055.	1.6	65
90	2.0 Ã refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with a peptide inhibitor and detergent. Acta Crystallographica Section D: Biological Crystallography, 1993, 49, 357-361.	2.5	64

#	Article	IF	CITATIONS
91	mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Science Signaling, 2021, 14, .	1.6	64
92	Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Protein Science, 1997, 6, 569-579.	3.1	62
93	Dissecting cAMP Binding Domain A in the Rlα Subunit of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1998, 273, 26739-26746.	1.6	62
94	Cyclic AMP Analog Blocks Kinase Activation by Stabilizing Inactive Conformation: Conformational Selection Highlights a New Concept in Allosteric Inhibitor Design. Molecular and Cellular Proteomics, 2011, 10, M110.004390.	2.5	62
95	Allosteric Network of cAMP-dependent Protein Kinase Revealed by Mutation of Tyr204 in the P+1 Loop. Journal of Molecular Biology, 2005, 346, 191-201.	2.0	60
96	Crystal structure of the WD40 domain dimer of LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1579-1584.	3.3	60
97	GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. ELife, 2019, 8, .	2.8	60
98	Rlα Subunit of PKA. Structure, 2004, 12, 1057-1065.	1.6	58
99	Divalent Metal Ions Mg ²⁺ and Ca ²⁺ Have Distinct Effects on Protein Kinase A Activity and Regulation. ACS Chemical Biology, 2015, 10, 2303-2315.	1.6	57
100	A Generalized Allosteric Mechanism for cis-Regulated Cyclic Nucleotide Binding Domains. PLoS Computational Biology, 2008, 4, e1000056.	1.5	55
101	Synchronous Opening and Closing Motions Are Essential for cAMP-Dependent Protein Kinase A Signaling. Structure, 2014, 22, 1735-1743.	1.6	55
102	cAMP-dependent Protein Kinase Regulatory Subunit Type Ilβ. Journal of Biological Chemistry, 2004, 279, 7029-7036.	1.6	54
103	Localization and quaternary structure of the PKA RlÎ ² holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12443-12448.	3.3	54
104	Identification of phosphorylation sites in the recombinant catalytic subunit of cAMP-dependent protein kinase. Journal of Biological Chemistry, 1993, 268, 18626-32.	1.6	54
105	Protein kinases: A diverse family of related proteins. BioEssays, 1987, 7, 24-29.	1.2	52
106	Selective protection of sulfhydryl groups in cAMP-dependent protein kinase II Journal of Biological Chemistry, 1983, 258, 10981-10987.	1.6	52
107	A Transition Path Ensemble Study Reveals a Linchpin Role for Mg ²⁺ during Rate-Limiting ADP Release from Protein Kinase A. Biochemistry, 2009, 48, 11532-11545.	1.2	50
108	600 ps Molecular dynamics reveals stable substructures and flexible hinge points in cAMP dependent protein kinase. , 1999, 50, 513-524.		49

7

#	Article	IF	CITATIONS
109	Tuning the "violin―of protein kinases: The role of dynamicsâ€based allostery. IUBMB Life, 2019, 71, 685-696.	1.5	49
110	From structure to the dynamic regulation of a molecular switch: A journey over 3Âdecades. Journal of Biological Chemistry, 2021, 296, 100746.	1.6	49
111	Cotranslational <i>cis</i> -phosphorylation of the COOH-terminal tail is a key priming step in the maturation of cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1221-9.	3.3	47
112	Role of N-Terminal Myristylation in the Structure and Regulation of cAMP-Dependent Protein Kinase. Journal of Molecular Biology, 2012, 422, 215-229.	2.0	47
113	Intramolecular C2 Domain-Mediated Autoinhibition of Protein Kinase C βII. Cell Reports, 2015, 12, 1252-1260.	2.9	47
114	Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer. Proceedings of the United States of America, 2017, 114, E931-E940.	3.3	47
115	Communication between Tandem cAMP Binding Domains in the Regulatory Subunit of Protein Kinase A-lα as Revealed by Domain-silencing Mutations. Journal of Biological Chemistry, 2010, 285, 15523-15537.	1.6	46
116	Contribution of Non-catalytic Core Residues to Activity and Regulation in Protein Kinase A. Journal of Biological Chemistry, 2009, 284, 6241-6248.	1.6	44
117	Integration of signaling in the kinome: Architecture and regulation of the αC Helix. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1567-1574.	1.1	43
118	Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3716-3721.	3.3	43
119	Expression of an active Cα _s mutant in skeletal stem cells is sufficient and necessary for fibrous dysplasia initiation and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E428-E437.	3.3	43
120	Cushing's syndrome driver mutation disrupts protein kinase A allosteric network, altering both regulation and substrate specificity. Science Advances, 2019, 5, eaaw9298.	4.7	43
121	Effect of the thermostable protein kinase inhibitor on intracellular localization of the catalytic subunit of cAMP-dependent protein kinase. Journal of Biological Chemistry, 1992, 267, 16824-8.	1.6	43
122	Differential labeling and identification of the cysteine-containing tryptic peptides of catalytic subunit from porcine heart cAMP-dependent protein kinase. Journal of Biological Chemistry, 1981, 256, 3743-50.	1.6	43
123	p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Reports, 2016, 14, 255-268.	2.9	42
124	Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain. ELife, 2017, 6, .	2.8	42
125	Differential Binding of cAMP-dependent Protein Kinase Regulatory Subunit Isoforms lα and Ilβ to the Catalytic Subunit. Journal of Biological Chemistry, 2001, 276, 4102-4108.	1.6	40
126	Disruption of Protein Kinase A Localization Using a Trans-activator of Transcription (TAT)-conjugated A-kinase-anchoring Peptide Reduces Cardiac Function. Journal of Biological Chemistry, 2010, 285, 27632-27640.	1.6	40

#	Article	IF	CITATIONS
127	Evolution of a dynamic molecular switch. IUBMB Life, 2019, 71, 672-684.	1.5	40
128	Globally correlated conformational entropy underlies positive and negative cooperativity in a kinase's enzymatic cycle. Nature Communications, 2019, 10, 799.	5.8	40
129	A Conserved Glu–Arg Salt Bridge Connects Coevolved Motifs That Define the Eukaryotic Protein Kinase Fold. Journal of Molecular Biology, 2012, 415, 666-679.	2.0	39
130	cAMP-dependent protein kinase defines a family of enzymes. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340, 315-324.	1.8	38
131	An Isoform-Specific Myristylation Switch Targets Type II PKA Holoenzymes to Membranes. Structure, 2015, 23, 1563-1572.	1.6	38
132	Disordered Protein Kinase Regions in Regulation of Kinase Domain Cores. Trends in Biochemical Sciences, 2019, 44, 300-311.	3.7	38
133	Backbone Flexibility of Five Sites on the Catalytic Subunit of cAMP-Dependent Protein Kinase in the Open and Closed Conformations. Biochemistry, 1998, 37, 13728-13735.	1.2	37
134	PKA RIα Homodimer Structure Reveals an Intermolecular Interface with Implications for Cooperative cAMP Binding and Carney Complex Disease. Structure, 2014, 22, 59-69.	1.6	37
135	Examination of an activeâ€site electrostatic node in the cAMPâ€dependent protein kinase catalytic subunit. Protein Science, 1996, 5, 1316-1324.	3.1	36
136	Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
137	Solution Scattering Reveals Large Differences in the Global Structures of Type II Protein Kinase A Isoforms. Journal of Molecular Biology, 2006, 357, 880-889.	2.0	34
138	A chimeric mechanism for polyvalent <i>trans</i> â€phosphorylation of PKA by PDK1. Protein Science, 2009, 18, 1486-1497.	3.1	33
139	Dynamic allostery-based molecular workings of kinase:peptide complexes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15052-15061.	3.3	33
140	Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. American Journal of Human Genetics, 2020, 107, 977-988.	2.6	33
141	Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor. Journal of Biological Chemistry, 2016, 291, 6182-6199.	1.6	32
142	Crystal structure of the E230Q mutant of cAMP-dependent protein kinase reveals an unexpected apoenzyme conformation and an extended N-terminal A helix. Protein Science, 2005, 14, 2871-2879.	3.1	31
143	Selective protection of sulfhydryl groups in cAMP-dependent protein kinase II. Journal of Biological Chemistry, 1983, 258, 10981-7.	1.6	31
144	Consequences of cAMP-Binding Site Mutations on the Structural Stability of the Type I Regulatory Subunit of cAMP-Dependent Protein Kinase. Biochemistry, 2000, 39, 15022-15031.	1.2	30

#	Article	IF	CITATIONS
145	Isoform-specific targeting of PKA to multivesicular bodies. Journal of Cell Biology, 2011, 193, 347-363.	2.3	30
146	Single Turnover Autophosphorylation Cycle of the PKA RII $\hat{1}^2$ Holoenzyme. PLoS Biology, 2015, 13, e1002192.	2.6	30
147	Using Markov State Models to Develop a Mechanistic Understanding of Protein Kinase A Regulatory Subunit RIα Activation in Response to cAMP Binding. Journal of Biological Chemistry, 2014, 289, 30040-30051.	1.6	29
148	Kinase domain dimerization drives RIPK3-dependent necroptosis. Science Signaling, 2018, 11, .	1.6	29
149	Cyclic AMP- and (Rp)-cAMPS-induced Conformational Changes in a Complex of the Catalytic and Regulatory (Rlα) Subunits of Cyclic AMP-dependent Protein Kinase. Molecular and Cellular Proteomics, 2010, 9, 2225-2237.	2.5	28
150	Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα. PLoS Biology, 2015, 13, e1002305.	2.6	28
151	Integrated Method to Attach DNA Handles and Functionally Select Proteins to Study Folding and Protein-Ligand Interactions with Optical Tweezers. Scientific Reports, 2017, 7, 10843.	1.6	28
152	Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16347-16356.	3.3	28
153	Conformational Equilibrium of N-Myristoylated cAMP-Dependent Protein Kinase A by Molecular Dynamics Simulations. Biochemistry, 2012, 51, 10186-10196.	1.2	27
154	Structures of the PKA RIα Holoenzyme with the FLHCC Driver J-PKAcα or Wild-Type PKAcα. Structure, 2019, 27, 816-828.e4.	1.6	27
155	Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases. PLoS Biology, 2016, 14, e2000127.	2.6	27
156	G <i>α</i> s–Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G <i>α</i> s-PKA Signaling. Pharmacological Reviews, 2021, 73, 1326-1368.	7.1	27
157	Molecular Features of Product Release for the PKA Catalytic Cycle. Biochemistry, 2015, 54, 2-10.	1.2	26
158	Sub-mitochondrial localization of genetic-tagged MIB interacting partners: Mic19, Mic60 and Sam50. Journal of Cell Science, 2017, 130, 3248-3260.	1.2	26
159	Zooming in on protons: Neutron structure of protein kinase A trapped in a product complex. Science Advances, 2019, 5, eaav0482.	4.7	26
160	Recombinant Strategies for Rapid Purification of Catalytic Subunits of cAMP-Dependent Protein Kinase. Analytical Biochemistry, 1997, 245, 115-122.	1.1	25
161	Two wellâ€defined motifs in the cAMPâ€dependent protein kinase inhibitor (PKIα) correlate with inhibitory and nuclear export function. Protein Science, 1999, 8, 545-553.	3.1	25
162	BRAF inhibitors promote intermediate BRAF(V600E) conformations and binary interactions with activated RAS. Science Advances, 2019, 5, eaav8463.	4.7	25

#	Article	IF	CITATIONS
163	Allosteric pluripotency as revealed by protein kinase A. Science Advances, 2020, 6, eabb1250.	4.7	25
164	Insights into the Phosphoryl Transfer Catalyzed by cAMP-Dependent Protein Kinase: An X-ray Crystallographic Study of Complexes with Various Metals and Peptide Substrate SP20. Biochemistry, 2013, 52, 3721-3727.	1.2	24
165	cAMP-dependent Protein Kinase: A Framework for a Diverse Family of Enzymes. Cold Spring Harbor Symposia on Quantitative Biology, 1988, 53, 121-130.	2.0	24
166	A Three-Dimensional Model of the Cdc2 Protein Kinase: Localization of Cyclin- and Suc1-Binding Regions and Phosphorylation Sites. Molecular and Cellular Biology, 1993, 13, 5122-5131.	1.1	24
167	Conformational Landscape of the PRKACA-DNAJB1 Chimeric Kinase, the Driver for Fibrolamellar Hepatocellular Carcinoma. Scientific Reports, 2018, 8, 720.	1.6	23
168	Cardiac ischemia-reperfusion injury induces ROS-dependent loss of PKA regulatory subunit RIα. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1231-H1242.	1.5	23
169	Binding-Dependent Disorderâ^'Order Transition in PKIα:  A Fluorescence Anisotropy Study. Biochemistry, 1999, 38, 6774-6780.	1.2	22
170	Structural analyses of the PKA RIIÎ ² holoenzyme containing the oncogenic DnaJB1-PKAc fusion protein reveal protomer asymmetry and fusion-induced allosteric perturbations in fibrolamellar hepatocellular carcinoma. PLoS Biology, 2020, 18, e3001018.	2.6	22
171	Identification of electrostatic interaction sites between the regulatory and catalytic subunits of cyclic AMPâ€dependent protein kinase. Protein Science, 1997, 6, 1825-1834.	3.1	21
172	Defective internal allosteric network imparts dysfunctional ATP/substrate-binding cooperativity in oncogenic chimera of protein kinase A. Communications Biology, 2021, 4, 321.	2.0	21
173	Endogenous protein kinase A inhibitor (PKI?) modulates synaptic activity. , 1998, 53, 269-278.		19
174	Probing the Multidomain Structure of the Type I Regulatory Subunit of cAMP-Dependent Protein Kinase Using Mutational Analysis: Role and Environment of Endogenous Tryptophansâ€. Biochemistry, 2000, 39, 5662-5671.	1.2	19
175	Structure of a PKA RIα Recurrent Acrodysostosis Mutant Explains Defective cAMP-Dependent Activation. Journal of Molecular Biology, 2016, 428, 4890-4904.	2.0	19
176	Structure of sm <scp>AKAP</scp> and its regulation by <scp>PKA</scp> â€mediated phosphorylation. FEBS Journal, 2016, 283, 2132-2148.	2.2	19
177	Uncoupling Catalytic and Binding Functions in the Cyclic AMP-Dependent Protein Kinase A. Structure, 2016, 24, 353-363.	1.6	19
178	Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains. Nature Communications, 2019, 10, 3984.	5.8	18
179	Kinase Domain Is a Dynamic Hub for Driving LRRK2 Allostery. Frontiers in Molecular Neuroscience, 2020, 13, 538219.	1.4	18
180	LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains. PLoS Biology, 2022, 20, e3001427.	2.6	18

#	Article	IF	CITATIONS
181	Type IIβ Regulatory Subunit of cAMP-Dependent Protein Kinase: Purification Strategies to Optimize Crystallization. Protein Expression and Purification, 2000, 20, 357-364.	0.6	17
182	The gene product of a Trypanosoma equiperdum ortholog of the cAMP-dependent protein kinase regulatory subunit is a monomeric protein that is not capable of binding cyclic nucleotides. Biochimie, 2018, 146, 166-180.	1.3	17
183	Yet another "active―pseudokinase, Erb3. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8047-8048.	3.3	16
184	Allosteric linkers in cAMP signalling. Biochemical Society Transactions, 2014, 42, 139-144.	1.6	16
185	Mapping the Hydrogen Bond Networks in the Catalytic Subunit of Protein Kinase A Using H/D Fractionation Factors. Biochemistry, 2015, 54, 4042-4049.	1.2	16
186	Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RIα. Biochemistry, 2017, 56, 1536-1545.	1.2	16
187	Multi-state recognition pathway of the intrinsically disordered protein kinase inhibitor by protein kinase A. ELife, 2020, 9, .	2.8	16
188	Crystal structures of the catalytic subunit of cAMP-dependent protein kinase reveal general features of the protein kinase family. Receptor, 1993, 3, 165-72.	0.8	16
189	Catalytic subunit of cAMP-dependent protein kinase: Electrostatic features and peptide recognition. , 1998, 39, 353-365.		15
190	Isoform-specific interactions between meprin metalloproteases and the catalytic subunit of protein kinase A: significance in acute and chronic kidney injury. American Journal of Physiology - Renal Physiology, 2015, 308, F56-F68.	1.3	15
191	Switching of the folding-energy landscape governs the allosteric activation of protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7478-E7485.	3.3	15
192	The Tails of Protein Kinase A. Molecular Pharmacology, 2022, 101, 219-225.	1.0	15
193	Identifying Critical Non-Catalytic Residues that Modulate Protein Kinase A Activity. PLoS ONE, 2009, 4, e4746.	1.1	15
194	Discovery of allostery in PKA signaling. Biophysical Reviews, 2015, 7, 227-238.	1.5	14
195	PKA Cβ: a forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochemical Journal, 2021, 478, 2101-2119.	1.7	13
196	A non-catalytic herpesviral protein reconfigures ERK-RSK signaling by targeting kinase docking systems in the host. Nature Communications, 2022, 13, 472.	5.8	13
197	Fluorescence energy transfer between cysteine 199 and cysteine 343: evidence for magnesium ATP-dependent conformational change in the catalytic subunit of cAMP-dependent protein kinase. Biochemistry, 1989, 28, 3606-3613.	1.2	11
198	A Catalytically Disabled Double Mutant of Src Tyrosine Kinase Can Be Stabilized into an Active-Like Conformation. Journal of Molecular Biology, 2018, 430, 881-889.	2.0	10

#	Article	IF	CITATIONS
199	Domain architecture of aCaenorhabditis elegansAKAP suggests a novel AKAP function. FEBS Letters, 2000, 486, 107-111.	1.3	9
200	Mechanisms of cyclic AMP/protein kinase A- and glucocorticoid-mediated apoptosis using S49 lymphoma cells as a model system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12681-12686.	3.3	9
201	Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A. Journal of Biological Chemistry, 2015, 290, 22274-22286.	1.6	9
202	Hypothesis: Unifying model of domain architecture for conventional and novel protein kinase C isozymes. IUBMB Life, 2020, 72, 2584-2590.	1.5	9
203	Catalytic subunit of cAMP-dependent protein kinase: Electrostatic features and peptide recognition. , 1996, 39, 353.		9
204	Noncanonical protein kinase A activation by oligomerization of regulatory subunits as revealed by inherited Carney complex mutations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
205	Is Disrupted Nucleotide-Substrate Cooperativity a Common Trait for Cushing's Syndrome Driving Mutations of Protein Kinase A?. Journal of Molecular Biology, 2021, 433, 167123.	2.0	8
206	Solution structure of synthetic peptide inhibitor and substrate of cAMPâ€dependent protein kinase. A study by 2D ¹ H NMR and molecular dynamics. Chemical Biology and Drug Design, 1997, 49, 210-220.	1.2	7
207	Catalytic subunit of cAMP-dependent protein kinase: electrostatic features and peptide recognition. Biopolymers, 1996, 39, 353-65.	1.2	7
208	The Roles of the RIIβ Linker and N-terminal Cyclic Nucleotide-binding Domain in Determining the Unique Structures of the Type IIβ Protein Kinase A. Journal of Biological Chemistry, 2014, 289, 28505-28512.	1.6	5
209	Drugging the Undruggable: How Isoquinolines and PKA Initiated the Era of Designed Protein Kinase Inhibitor Therapeutics. Biochemistry, 2021, 60, 3470-3484.	1.2	5
210	Mitochondrial ChChD3 acts as a Scaffold for Mitofilin, Sam50 and PKA. FASEB Journal, 2008, 22, 645.20.	0.2	4
211	Protein Kinase A in Human Retina: Differential Localization of Cβ, Cα, RIIα, and RIIβ in Photoreceptors Highlights Non-redundancy of Protein Kinase A Subunits. Frontiers in Molecular Neuroscience, 2021, 14, 782041.	1.4	4
212	Crystal structure of a complex between the catalytic and regulatory (RI alpha 91â€379) subunits of PKA. FASEB Journal, 2006, 20, A492.	0.2	2
213	GNAS â€₱KA Oncosignaling Network in Colorectal Cancer. FASEB Journal, 2018, 32, 695.9.	0.2	2
214	ChChd3, an Inner Mitochondrial Membrane Protein is Essential for Maintaining Cristae Integrity and Mitochondrial Function. FASEB Journal, 2010, 24, 510.4.	0.2	1
215	PKA RIα Holoenzyme Crystal Structure Reveals Its Allosteric Regulation and Carney Complex Disease Implications. FASEB Journal, 2018, 32, lb50.	0.2	1
216	A Cushing Syndrome Mutation of Protein Kinase A Câ€subunit Disrupts the Internal Allosteric Network Affecting Regulation and Substrate Specificity. FASEB Journal, 2019, 33, 478.11.	0.2	1

#	Article	IF	CITATIONS
217	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	0.5	0
218	Protein kinase A in the neutron beam: Insights for catalysis from directly observing protons. Methods in Enzymology, 2020, 634, 311-331.	0.4	0
219	Molecular Determinants of PKA RIα Driven Liquid‣iquid Phase Separation. FASEB Journal, 2021, 35, .	0.2	0
220	Fifty Years Since the Discovery of PKA. FASEB Journal, 2002, 22, 412.3-412.3.	0.2	0
221	The role of Dâ€AKAP2 scaffolding in integration of PKA signaling. FASEB Journal, 2006, 20, LB73.	0.2	0
222	Crystal Structure of Type IIa Holoenzyme of PKA Defines the Molecular Basis of Isoform Diversity. FASEB Journal, 2006, 20, LB59.	0.2	0
223	AKIP1, PKA, and AIF: Human Embryonic Stem Cells Dance Towards Death. FASEB Journal, 2007, 21, A987.	0.2	0
224	Characterization of chchd3; A novel cAMP dependent protein kinase A substrate in mitochondria. FASEB Journal, 2007, 21, A986.	0.2	0
225	The mitochondrial targeting form of PKA anchoring protein Dâ€AKAP1a may affect the structure of mitochondria cristae and the function of mitochondria. FASEB Journal, 2007, 21, A987.	0.2	0
226	Dynamics of Signaling by PKA. FASEB Journal, 2007, 21, A204.	0.2	0
227	PKA Type IIa Holoenzyme Structure Reveals Isoform Diversity for Inhibition of Catalysis. FASEB Journal, 2008, 22, 1011.3.	0.2	0
228	Crystallization of PKA regulatory subunit from Saccharomyces cerevisiae. FASEB Journal, 2008, 22, 1050.13.	0.2	0
229	Evolution of allostery in the cyclic nucleotide binding module: A comparative genomics study. FASEB Journal, 2008, 22, 828.3.	0.2	0
230	The RGS homology domains of Dâ€AKAP2 regulate the endocytic recycling compartment through complexes with Rab4 and Rab11. FASEB Journal, 2008, 22, 816.6.	0.2	0
231	Conserved hydrophobic ensembles in protein kinases: their integrating and regulatory roles. FASEB Journal, 2008, 22, 1048.12.	0.2	0
232	Deciphering the Role of Disulfide Bonds in Rialpha. FASEB Journal, 2008, 22, 1044.14.	0.2	0
233	Regulation of NFâ€kB Nuclear Translocation by AKIP and PKAc. FASEB Journal, 2009, 23, .	0.2	0
234	Architecture of the PKA RIIÎ ² Holoenzyme. FASEB Journal, 2009, 23, 709.11.	0.2	0

#	Article	IF	CITATIONS
235	Evolution of PKA Signaling: Structure of Yeast Regulatory Subunit. FASEB Journal, 2009, 23, 709.10.	0.2	0
236	Dâ€AKAP2 interacts with Rab4 and Rab11 through its RGS domains and regulates transferrin recycling. FASEB Journal, 2009, 23, 877.6.	0.2	0
237	Structure of Dâ€AKAP2â€PKA RI isoform complex: Insights into AKAP specificity and selectivity. FASEB Journal, 2010, 24, 866.3.	0.2	0
238	Defining the Conserved Internal Architecture of a Protein Kinase. FASEB Journal, 2010, 24, 864.3.	0.2	0
239	Dynamics of PKA Signaling. FASEB Journal, 2010, 24, 309.1.	0.2	Ο
240	Proteomic analysis of the cAMP/protein kinase A (PKA) signaling pathway identifies PKA as a regulator of cellular response to oxidative stress. FASEB Journal, 2013, 27, 1143.16.	0.2	0
241	AKIP1 protects against cardiac injury via enhanced mitochondrial function. FASEB Journal, 2013, 27, 657.3.	0.2	0
242	Dynamic expression and localization of Protein Kinase A regulatory subunit $Rl\hat{I}$ in cardiac mitochondria controls response to oxidative stress. FASEB Journal, 2013, 27, 1209.22.	0.2	0
243	Cyclic AMP/PKAâ€Mediated Regulation of Mitochondria and Branchedâ€Chain Amino Acid Metabolism in S49 Lymphoma Cells. FASEB Journal, 2015, 29, 896.5.	0.2	0
244	A tribute to Eddy Fischer (April 6, 1920–August 27, 2021): Passionate biochemist and mentor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121815119.	3.3	0
245	Title is missing!. , 2020, 18, e3001018.		0
246	Title is missing!. , 2020, 18, e3001018.		0
247	Title is missing!. , 2020, 18, e3001018.		0
248	Title is missing!. , 2020, 18, e3001018.		0
249	Title is missing!. , 2020, 18, e3001018.		0
250	Title is missing!. , 2020, 18, e3001018.		0
251	Nonâ€canonical Recruitment of PKA Catalytic Subunits to Rlαâ€driven Biomolecular Condensates. FASEB Journal, 2022, 36, .	0.2	0
252	Integrated regulation of PKA by fast and slow neurotransmission in the nucleus accumbens controls plasticity and stress responses. Journal of Biological Chemistry, 2022, 298, 102245.	1.6	0