Mechelle J Owen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6081226/publications.pdf

Version: 2024-02-01

471061 642321 23 773 17 23 citations h-index g-index papers 23 23 23 637 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Australian Journal of Agricultural Research, 2007, 58, 711.	1.5	168
2	Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in <i>Lolium rigidum</i> populations. Pest Management Science, 2016, 72, 255-263.	1.7	77
3	Multiple herbicide-resistant wild radish (Raphanus raphanistrum) populations dominate Western Australian cropping fields. Crop and Pasture Science, 2015, 66, 1079.	0.7	63
4	Nonâ€targetâ€siteâ€based resistance to ALSâ€inhibiting herbicides in six <i>Bromus rigidus</i> populations from Western Australian cropping fields. Pest Management Science, 2012, 68, 1077-1082.	1.7	57
5	Herbicide-Resistant Weed Seeds Contaminate Grain Sown in the Western Australian Grainbelt. Weed Science, 2010, 58, 466-472.	0.8	49
6	Evolution of resistance to HPPDâ€inhibiting herbicides in a wild radish population via enhanced herbicide metabolism. Pest Management Science, 2020, 76, 1929-1937.	1.7	43
7	Dinitroaniline herbicide resistance in a multipleâ€resistant <scp><i>Lolium rigidum</i></scp> population. Pest Management Science, 2018, 74, 925-932.	1.7	31
8	Identification of resistance to either paraquat or ALSâ€inhibiting herbicides in two Western Australian <i>Hordeum leporinum</i> biotypes. Pest Management Science, 2012, 68, 757-763.	1.7	30
9	Intensive cropping systems select for greater seed dormancy and increased herbicide resistance levels in <i>Lolium rigidum </i> (annual ryegrass). Pest Management Science, 2015, 71, 966-971.	1.7	28
10	A novel <i>psbA</i> mutation (Phe274–Val) confers resistance to PSII herbicides in wild radish (<scp><i>Raphanus raphanistrum</i></scp>). Pest Management Science, 2019, 75, 144-151.	1.7	27
11	Glyphosate-Resistant Rigid Ryegrass (Lolium rigidum) Populations in the Western Australian Grain Belt. Weed Technology, 2010, 24, 44-49.	0.4	26
12	Herbicide Resistance in Rigid Ryegrass (Lolium rigidum) Has Not Led to Higher Weed Densities in Western Australian Cropping Fields. Weed Science, 2009, 57, 61-65.	0.8	23
13	ACCase-Inhibiting Herbicide-Resistant <i>Avena</i> Spp. Populations from the Western Australian Grain Belt. Weed Technology, 2012, 26, 130-136.	0.4	23
14	2,4-D and dicamba resistance mechanisms in wild radish: subtle, complex and population specific?. Annals of Botany, 2018, 122, 627-640.	1.4	22
15	Metribuzin Resistance in a Wild Radish (<i>Raphanus raphanistrum</i>) Population via Both <i>psbA</i> Gene Mutation and Enhanced Metabolism. Journal of Agricultural and Food Chemistry, 2019, 67, 1353-1359.	2.4	22
16	Herbicide resistance in Bromus and Hordeum spp. in the Western Australian grain belt. Crop and Pasture Science, 2015, 66, 466.	0.7	20
17	The frequency of herbicide-resistant wild oat (Avena spp.) populations remains stable in Western Australian cropping fields. Crop and Pasture Science, 2016, 67, 520.	0.7	20
18	Increasing the value and efficiency of herbicide resistance surveys. Pest Management Science, 2021, 77, 3881-3889.	1.7	13

#	Article	IF	CITATIONS
19	Nonâ€ŧargetâ€site resistance to PDSâ€ɨnhibiting herbicides in a wild radish (<scp><i>Raphanus) Tj ETQq1 1 0.78</i></scp>	4314 rgBT	/Qverlock
20	A Survey in the Southern Grain Belt of Western Australia Did Not Find <i>Conyza</i> Spp. Resistant to Glyphosate. Weed Technology, 2009, 23, 492-494.	0.4	9
21	Agricultural Weed Assessment Calculator: An Australian Evaluation. Plants, 2020, 9, 1737.	1.6	4
22	Targetâ€site resistance to trifluralin is more prevalent in annual ryegrass populations from Western Australia. Pest Management Science, 2022, 78, 1206-1212.	1.7	4
23	Lessons learnt: crop-seed cleaning reduces weed-seed contamination in Western Australian grain samples. Crop and Pasture Science, 2020, 71, 660.	0.7	2