Ji-Won Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6081063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver alloy-based metal matrix composites: a potential material for reliable transparent thin film heaters. Journal of Materials Chemistry C, 2021, 9, 4670-4681.	5.5	9
2	Synthesis of large monolayer titania nanosheets through flux method. Journal of Asian Ceramic Societies, 2021, 9, 916-925.	2.3	6
3	Design of dispersion-free dielectrics as engineering perovskite unit cells of KCa2Li(n-3)NbnO3n+1 ceramics. Ceramics International, 2021, 47, 17331-17336.	4.8	1
4	Defect-Controlled, Scalable Layer-by-Layer Assembly of High-k Perovskite Oxide Nanosheets for All Two-Dimensional Nanoelectronics. Chemistry of Materials, 2021, 33, 8685-8692.	6.7	8
5	Wafer-Scale, Conformal, and Low-Temperature Synthesis of Layered Tin Disulfides for Emerging Nonplanar and Flexible Electronics. ACS Applied Materials & Interfaces, 2020, 12, 2679-2686.	8.0	20
6	Crystal structure and piezoelectric characteristics of various phases near the triple-point composition in PZ-PT-PNN system. Journal of the European Ceramic Society, 2020, 40, 1947-1956.	5.7	19
7	Rapid Defrost Transparent Thin-Film Heater with Flexibility and Chemical Stability. ACS Applied Materials & Interfaces, 2020, 12, 38406-38414.	8.0	12
8	Electrochemical activity of Samarium on starch-derived porous carbon: rechargeable Li- and Al-ion batteries. Nano Convergence, 2020, 7, 11.	12.1	16
9	Recent Advances in Rechargeable Aluminum-Ion Batteries and Considerations for Their Future Progress. ACS Applied Energy Materials, 2020, 3, 6019-6035.	5.1	58
10	Sr2Nb3O10 nanosheet thin film grown via LB method for high-performance planar-type pseudocapacitor. Applied Surface Science, 2020, 525, 146640.	6.1	5
11	Transparent SiN thin-film anode for thin-film batteries by reactive sputtering at room temperature. Chemical Engineering Journal, 2020, 401, 126086.	12.7	5
12	Hybrid Thin-Film Encapsulation for All-Solid-State Thin-Film Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11504-11510.	8.0	11
13	3D architectures of single-crystalline complex oxides. Materials Horizons, 2020, 7, 1552-1557.	12.2	9
14	Rendering Redox Reactions of Cathodes in Li-Ion Capacitors Enabled by Lanthanides. ACS Omega, 2020, 5, 1634-1639.	3.5	9
15	Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material. ACS Applied Materials & Interfaces, 2019, 11, 31799-31805.	8.0	28
16	Layered metal–organic framework based on tetracyanonickelate as a cathode material for <i>in situ</i> Li-ion storage. RSC Advances, 2019, 9, 21363-21370.	3.6	32
17	Atomic Doping Site and Dielectric Property in Perovskite Oxide Nanosheets. Microscopy and Microanalysis, 2019, 25, 2152-2153.	0.4	1
18	Tailorable Topologies for Selectively Controlling Crystals of Expanded Prussian Blue Analogues. Crystal Growth and Design, 2019, 19, 7385-7395.	3.0	21

#	Article	IF	CITATIONS
19	Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries. Scientific Reports, 2019, 9, 13573.	3.3	44
20	S@GO as a High-Performance Cathode Material for Rechargeable Aluminum-Ion Batteries. Electronic Materials Letters, 2019, 15, 720-726.	2.2	23
21	Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage. RSC Advances, 2019, 9, 26668-26675.	3.6	28
22	Metal-organic framework-derived metal oxide nanoparticles@reduced graphene oxide composites as cathode materials for rechargeable aluminium-ion batteries. Scientific Reports, 2019, 9, 13739.	3.3	28
23	Properties of CoS2/CNT as a Cathode Material of Rechargeable Aluminum-Ion Batteries. Electronic Materials Letters, 2019, 15, 727-732.	2.2	33
24	Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. Scientific Reports, 2019, 9, 13665.	3.3	23
25	Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries. Journal of Power Sources, 2019, 434, 226713.	7.8	29
26	Continuous Composition Spread and Electrochemical Studies of Low Cobalt Content Li(Ni,Mn,Co)O2 Cathode Materials. Coatings, 2019, 9, 366.	2.6	3
27	A Hybrid Energy Storage Mechanism of Zinc Hexacyanocobaltate-Based Metal–Organic Framework Endowing Stationary and High-Performance Lithium-Ion Storage. Electronic Materials Letters, 2019, 15, 444-453.	2.2	28
28	Thermally stable high strain and piezoelectric characteristics of (Li, Na, K)(Nb,) Tj ETQq0 0 0 rgBT /Overlock 10 T Society, 2019, 102, 6115-6125.	f 50 387 T 3.8	d (Sb)O _{ 18}
29	Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Convergence, 2019, 6, 6.	12.1	94
30	+Iron hexacyanocobaltate metal-organic framework: Highly reversible and stationary electrode material with rich borders for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 791, 911-917.	5.5	54
31	Cerium Hexacyanocobaltate: A Lanthanide-Compliant Prussian Blue Analogue for Li-Ion Storage. ACS Omega, 2019, 4, 21410-21416.	3.5	23
32	Various cubic-based polymorphic phase boundary structures in (1-y)(Na0.5K0.5)(Nb1-xSbx)-yCaTiO3 ceramics and their piezoelectric properties. Journal of the European Ceramic Society, 2019, 39, 973-985.	5.7	14
33	Recent Advances in the Nanocatalyst-Assisted NaBH ₄ Reduction of Nitroaromatics in Water. ACS Omega, 2019, 4, 483-495.	3.5	180
34	Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM). Applied Surface Science, 2018, 444, 97-104.	6.1	11
35	A novel class of oxynitrides stabilized by nitrogen dimer formation. Scientific Reports, 2018, 8, 14471.	3.3	6
36	Zn Vacancy Formation Energy and Diffusion Coefficient of CVT ZnO Crystals in the Sub-Surface Micron Region. Scientific Reports, 2018, 8, 13446.	3.3	11

#	Article	IF	CITATIONS
37	Exploration of Si-doped SnO2 composition and properties of oxide/Ag/oxide multilayers prepared using continuous composition spread by sputtering. Thin Solid Films, 2018, 660, 606-612.	1.8	4
38	Laser-irradiated inclined metal nanocolumns for selective, scalable, and room-temperature synthesis of plasmonic isotropic nanospheres. Journal of Materials Chemistry C, 2018, 6, 6038-6045.	5.5	37
39	Low-temperature wafer-scale synthesis of two-dimensional SnS ₂ . Nanoscale, 2018, 10, 17712-17721.	5.6	30
40	Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy, 2018, 53, 225-231.	16.0	53
41	Essential Macleod Program (EMP) simulated fabrication of high quality Zn:SnO 2 /Ag/Zn:SnO 2 multilayer transparent conducting electrode on flexible substrates. Ceramics International, 2017, 43, 7216-7221.	4.8	11
42	Critical increase in Na-doping facilitates acceptor band movements that yields ~180 meV shallow hole conduction in ZnO bulk crystals. Scientific Reports, 2017, 7, 44196.	3.3	10
43	Dielectric properties of single crystal Sr 2 Nb 3 O 10 dielectric nanosheet thin films by electrophoretic deposition (EPD) and post deposition treatments. Journal of Alloys and Compounds, 2017, 711, 51-57.	5.5	9
44	Synthesis of Sr ₂ Nb ₃ O ₁₀ nanosheets and their application for growth of thin film using an electrophoretic method. Journal of the American Ceramic Society, 2017, 100, 1098-1107.	3.8	14
45	Formation of high concentrations of isolated Zn vacancies and evidence for their acceptor levels in ZnO. Journal of Alloys and Compounds, 2017, 729, 1031-1037.	5.5	24
46	Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures. Chemistry of Materials, 2017, 29, 8100-8110.	6.7	68
47	High work function MoO 2 and ReO 2 contacts for p -type Si and GaN by a room-temperature non-vacuum process. Materials Science in Semiconductor Processing, 2017, 71, 374-377.	4.0	7
48	Full range optical and electrical properties of Zn-doped SnO2 and oxide/metal/oxide multilayer thin films deposited on flexible PET substrate. Journal of Alloys and Compounds, 2017, 694, 217-222.	5.5	40
49	Highly Transparent MTO/Ag/MTO Multilayer Film Deposited on Polyethylene Terephthalate Substrate for Transparent Conductive Oxide. Journal of Nanoscience and Nanotechnology, 2017, 17, 7218-7222.	0.9	5
50	Micro batteries for driving glucose sensors on smart lenses. , 2016, , .		0
51	Superior Additive of Exfoliated RuO ₂ Nanosheet for Optimizing the Electrode Performance of Metal Oxide over Graphene. Journal of Physical Chemistry C, 2016, 120, 11786-11796.	3.1	40
52	Enhancement of Mechanical Hardness in SnO _{<i>x</i>} N _{<i>y</i>} with a Dense High-Pressure Cubic Phase of SnO ₂ . Chemistry of Materials, 2016, 28, 7051-7057.	6.7	23
53	Electrophoretic deposition of Ca ₂ Nb ₃ O ₁₀ ^{â^'} nanosheets synthesized by soft-chemical exfoliation. Journal of Materials Chemistry C, 2016, 4, 178-184.	5.5	18
54	LiMn2O4-based cathode thin films for Li thin-film batteries. Journal of the Korean Physical Society, 2016, 68, 41-53.	0.7	4

#	Article	IF	CITATIONS
55	Giant Electroresistive Ferroelectric Diode on 2DEG. Scientific Reports, 2015, 5, 10548.	3.3	10
56	Doped SnO ₂ Transparent Conductive Multilayer Thin Films Explored by Continuous Composition Spread. ACS Combinatorial Science, 2015, 17, 247-252.	3.8	17
57	Optical Properties and Electrochemical Performance of LiFePO ₄ Thin Films Deposited on Transparent Current Collectors. Journal of Nanoscience and Nanotechnology, 2015, 15, 8627-8631.	0.9	7
58	Synthesis and dielectric properties of strontium substituted calcium niobate ceramics. Journal of Alloys and Compounds, 2015, 622, 373-378.	5.5	5
59	Improved piezoelectric properties of lead-free (1â^'x)(Na0.5K0.5)NbO3–x(Ba0.95Sr0.05)TiO3 ceramics by particle size control. Ceramics International, 2014, 40, 12023-12028.	4.8	3
60	Full Range Dielectric Characteristics of Calcium Copper Titanate Thin Films Prepared by Continuous Composition-Spread Sputtering. ACS Combinatorial Science, 2014, 16, 478-484.	3.8	15
61	Role of Alumina Buffer Layer on the Dielectric and Piezoelectric Properties of PZT System Thick Films. Journal of the American Ceramic Society, 2013, 96, 491-495.	3.8	0
62	Piezoelectric properties of highly densified 0.01Pb (Mg1/2W1/2)O3–0.41Pb (Ni1/3Nb2/3)O3–0.35PbTiO3–0.23PbZrO3+0.1 wt% Y2O3+1.5 wt% ZnO thick films on alumina substrate. Ceramics International, 2013, 39, 1327-1333.	4.8	3
63	Synthesis and dielectric properties of HCa2Nb3O10 layered structure ceramics. Ceramics International, 2013, 39, S611-S614.	4.8	6
64	Highly conductive and damp heat stable transparent ZnO based thin films for flexible electronics. Journal of Alloys and Compounds, 2013, 554, 240-245.	5.5	14
65	Sn-substituted LiMn2O4 thin films prepared by RF magnetron sputtering. Solid State Sciences, 2013, 16, 13-15.	3.2	3
66	Electrochemical properties of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode thin film by RF sputtering for all-solid-state lithium battery. Journal of Solid State Chemistry, 2012, 196, 288-292.	2.9	17
67	Dielectric properties of composition spread SiO2–Al2O3 mixed phase thin films deposited at room temperature by off-axis RF magnetron sputtering. Ceramics International, 2012, 38, S79-S82.	4.8	3
68	Influence of substrate temperature on the electrical and optical properties of Ga-doped ZnO thin films fabricated by continuous composition spread. Ceramics International, 2012, 38, S605-S608.	4.8	15
69	Photoluminescence studies on MBE grown Co-doped ZnO thin films fabricated through ion implantation and swift heavy ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 305-308.	1.4	9
70	Dielectric properties of continuous composition spreaded MgO–Ta2O5 thin films. Applied Surface Science, 2011, 258, 843-847.	6.1	1
71	Electrical and optical properties of Ga doped zinc oxide thin films deposited at room temperature by continuous composition spread. Applied Surface Science, 2010, 256, 6219-6223.	6.1	18
72	Phase evolution and Sn-substitution in LiMn2O4 thin films prepared by pulsed laser deposition. Journal of Electroceramics, 2009, 23, 200-205.	2.0	11

#	Article	IF	CITATIONS
73	Synthesis and piezoelectric properties of (1 â^' x)(Na0.5K0.5)NbO3–x(Ba0.95Sr0.05)TiO3 ceramics. Journal of Electroceramics, 2009, 23, 502-505.	2.0	9
74	Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin, 2008, 43, 1913-1942.	5.2	514
75	Effect of the Octahedral Bond Valence on Microwave Dielectric Properties of (1-x)Al0.5Ta0.5O2-xMg0.33Ta0.67O2 Ceramics. Journal of the American Ceramic Society, 2006, 89, 1083-1086.	3.8	1
76	Correlation Between Temperature Coefficient of Resonant Frequency and Tetragonality Ratio. Journal of the American Ceramic Society, 2006, 89, 1144-1146.	3.8	9
77	Microwave dielectric properties of Ca[(Li1/3Nb2/3)1â^'x Tix]O3â^´Î^ ceramics with glass. Journal of Electroceramics, 2006, 17, 399-403.	2.0	8
78	Dielectric and patch antenna characteristics of new high-Q (1 â^' x)(Al1/2Ta1/2)O2â^'x(Mg1/3Ta2/3)O2 (0 ≤) Tj ETQq0 4.0	0 g rgBT /Ov

79	Structural characteristics of new high-Q (1â^'x)(Al1/2Ta1/2)O2–x(Mg1/3Ta2/3)O2 (0.2 <x<1.0) 2003,="" 243-246.<="" 79,="" and="" ceramics.="" chemistry="" materials="" microwave="" physics,="" th=""><th>4.0</th><th>0</th><th></th></x<1.0)>	4.0	0	
----	--	-----	---	--