Kai M Schmidt-Ott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6080775/publications.pdf

Version: 2024-02-01

90 papers 7,002 citations

35 h-index 81 g-index

104 all docs

104 docs citations

104 times ranked 8756 citing authors

#	Article	IF	CITATIONS
1	Cardiac Surgery–Related Acute Kidney Injury _ Risk Factors, Clinical Course, Management Suggestions. Journal of Cardiothoracic and Vascular Anesthesia, 2022, 36, 444-451.	0.6	6
2	Discordance between estimated and measured changes in plasma volume among patients with acute heart failure. ESC Heart Failure, 2022, 9, 66-76.	1.4	7
3	Response to Letter to the editor regarding †Discordance between estimated and measured changes in plasma volume among patients with acute heart failure'. ESC Heart Failure, 2022, , .	1.4	1
4	Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients. Journal of the American Society of Nephrology: JASN, 2021, 32, 291-306.	3.0	18
5	Mutations in transcription factor CP2-like 1 may cause a novel syndrome with distal renal tubulopathy in humans. Nephrology Dialysis Transplantation, 2021, 36, 237-246.	0.4	O
6	Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nature Reviews Nephrology, 2021, 17, 335-349.	4.1	140
7	Critical Illness and Systemic Inflammation Are Key Risk Factors of Severe Acute Kidney Injury in Patients With COVID-19. Kidney International Reports, 2021, 6, 905-915.	0.4	22
8	Serum creatinine and cystatin Câ€based estimates of glomerular filtration rate are misleading in acute heart failure. ESC Heart Failure, 2021, 8, 3070-3081.	1.4	11
9	Long-term effects of COVID-19 on kidney function. Lancet, The, 2021, 397, 1806-1807.	6.3	6
10	Nuclei Isolation from Adult Mouse Kidney for Single-Nucleus RNA-Sequencing. Journal of Visualized Experiments, 2021, , .	0.2	6
11	Acute kidney injury in patients treated with immune checkpoint inhibitors. , 2021, 9, e003467.		103
12	The Role of Centrosome Distal Appendage Proteins (DAPs) in Nephronophthisis and Ciliogenesis. International Journal of Molecular Sciences, 2021, 22, 12253.	1.8	9
13	Technologies for profiling the impact of genomic variants on transcription factor binding. Medizinische Genetik, 2021, 33, 147-155.	0.1	1
14	Functional roles of Grainyhead-like transcription factors in renal development and disease. Pediatric Nephrology, 2020, 35, 181-190.	0.9	4
15	Claudins in the Renal Collecting Duct. International Journal of Molecular Sciences, 2020, 21, 221.	1.8	8
16	Mix for Regeneration: Nephron Replacement by Transplanted Cells. Journal of the American Society of Nephrology: JASN, 2020, 31, 2743-2745.	3.0	0
17	Neutrophil Gelatinase–Associated Lipocalin Protects from ANCA-Induced GN by Inhibiting TH17 Immunity. Journal of the American Society of Nephrology: JASN, 2020, 31, 1569-1584.	3.0	18
18	Limited utility of qPCR-based detection of tumor-specific circulating mRNAs in whole blood from clear cell renal cell carcinoma patients. BMC Urology, 2020, 20, 7.	0.6	5

#	Article	IF	CITATIONS
19	Porphyromonas gingivalisImpairs Oral Epithelial Barrier through Targeting GRHL2. Journal of Dental Research, 2019, 98, 1150-1158.	2.5	28
20	Fluconazole Increases Osmotic Water Transport in Renal Collecting Duct through Effects on Aquaporin-2 Trafficking. Journal of the American Society of Nephrology: JASN, 2019, 30, 795-810.	3.0	19
21	Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney International, 2019, 95, 108-122.	2.6	40
22	Parallel generation of easily selectable multiple nephronal cell types from human pluripotent stem cells. Cellular and Molecular Life Sciences, 2019, 76, 179-192.	2.4	15
23	The Incidence of Acute Kidney Injury and Associated Hospital Mortality. Deutsches Ärzteblatt International, 2019, 116, 397-404.	0.6	41
24	Human Papillomavirus 16 E6 Induces FoxM1B in Oral Keratinocytes through GRHL2. Journal of Dental Research, 2018, 97, 795-802.	2.5	10
25	The IgCAM CLMP is required for intestinal and ureteral smooth muscle contraction by regulating Connexin43 and 45 expression in mice. DMM Disease Models and Mechanisms, $2018,11,$.	1.2	23
26	GRHL2 Is Required for Collecting Duct Epithelial Barrier Function and Renal Osmoregulation. Journal of the American Society of Nephrology: JASN, 2018, 29, 857-868.	3.0	20
27	Structural basis of gene regulation by the Grainyhead/CP2 transcription factor family. Nucleic Acids Research, 2018, 46, 2082-2095.	6.5	34
28	Transient Receptor Potential Vanilloid 4 Channel Deficiency Aggravates Tubular Damage after Acute Renal Ischaemia Reperfusion. Scientific Reports, 2018, 8, 4878.	1.6	17
29	Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF- \hat{l}^2 signaling pathways. Oncogenesis, 2018, 7, 38.	2.1	21
30	Unique Transcriptional Programs Identify Subtypes of AKI. Journal of the American Society of Nephrology: JASN, 2017, 28, 1729-1740.	3.0	93
31	Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation. Annals of the New York Academy of Sciences, 2017, 1397, 80-99.	1.8	28
32	Biomarkers in acute kidney injury – pathophysiological basis and clinical performance. Acta Physiologica, 2017, 219, 556-574.	1.8	238
33	Does NGAL reduce costs? A cost analysis of urine NGAL (uNGAL) & serum creatinine (sCr) for acute kidney injury (AKI) diagnosis. PLoS ONE, 2017, 12, e0178091.	1.1	21
34	Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. ELife, 2017, 6, .	2.8	58
35	Parsimonious DNA target-site recognition by Grh/CP2 transcription factors. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C298-C298.	0.0	0
36	The basal chorionic trophoblast cell layer: An emerging coordinator of placenta development. BioEssays, 2016, 38, 254-265.	1.2	32

#	Article	IF	CITATIONS
37	Urinary NGAL-Positive Acute Kidney Injury and Poor Long-term Outcomes in Hospitalized Patients. Kidney International Reports, 2016, 1, 114-124.	0.4	20
38	How to grow a kidney: patient-specific kidney organoids come of age. Nephrology Dialysis Transplantation, 2016, 32, gfw256.	0.4	9
39	Tubular Epithelial NF-κB Activity Regulates Ischemic AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 2658-2669.	3.0	138
40	Assembling Kidney Tissues from Cells: The Long Road from Organoids to Organs. Frontiers in Cell and Developmental Biology, 2015, 3, 70.	1.8	13
41	A <i>Grhl2</i> -dependent gene network controls trophoblast branching morphogenesis. Development (Cambridge), 2015, 142, 1125-1136.	1.2	61
42	Redox Regulation of Cell Contacts by Tricellulin and Occludin: Redox-Sensitive Cysteine Sites in Tricellulin Regulate Both Tri- and Bicellular Junctions in Tissue Barriers as Shown in Hypoxia and Ischemia. Antioxidants and Redox Signaling, 2015, 23, 1035-1049.	2.5	22
43	A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion. Journal of the American Society of Nephrology: JASN, 2015, 26, 2704-2715.	3.0	69
44	The Ebf1 knockout mouse and glomerular maturation. Kidney International, 2014, 85, 1014-1016.	2.6	1
45	Pathophysiology of the Cardiorenal Syndromes: Executive Summary from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Blood Purification, 2014, 37, 2-13.	0.9	7
46	α–Intercalated cells defend the urinary system from bacterial infection. Journal of Clinical Investigation, 2014, 124, 2963-2976.	3.9	127
47	α–Intercalated cells defend the urinary system from bacterial infection. Journal of Clinical Investigation, 2014, 124, 5521-5521.	3.9	4
48	Pathophysiology of Cardiorenal Syndrome Type 2 in Stable Chronic Heart Failure: Workgroup Statements from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contributions To Nephrology, 2013, 182, 117-136.	1.1	93
49	Novel signalling mechanisms and targets in renal ischaemia and reperfusion injury. Acta Physiologica, 2013, 208, 25-40.	1.8	54
50	Pathophysiology of the Cardiorenal Syndromes: Executive Summary from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contributions To Nephrology, 2013, 182, 82-98.	1.1	135
51	Calprotectin and neutrophil gelatinase–associated lipocalin in the differentiation of preâ€renal and intrinsic acute kidney injury. Acta Physiologica, 2013, 207, 700-708.	1.8	53
52	Neutrophil gelatinaseâ€associated lipocalin: pathophysiology and clinical applications. Acta Physiologica, 2013, 207, 663-672.	1.8	206
53	Stromal Protein Ecm1 Regulates Ureteric Bud Patterning and Branching. PLoS ONE, 2013, 8, e84155.	1.1	33
54	MWF rats with spontaneous albuminuria inherit a reduced efficiency of nephron induction during early nephrogenesis in comparison to SHR rats. Journal of Hypertension, 2012, 30, 2031-2038.	0.3	10

#	Article	IF	Citations
55	Diagnostic and Prognostic Stratification in the Emergency Department Using Urinary Biomarkers of Nephron Damage. Journal of the American College of Cardiology, 2012, 59, 246-255.	1.2	306
56	The Ngal reporter mouse detects the response of the kidney to injury in real time. Nature Medicine, 2011, 17, 216-222.	15.2	359
57	The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney. Developmental Biology, 2011, 360, 310-317.	0.9	24
58	Urine neutrophil gelatinase-associated lipocalin identifies unilateral and bilateral urinary tract obstruction. Nephrology Dialysis Transplantation, 2011, 26, 4132-4135.	0.4	19
59	WNT/ \hat{l}^2 -catenin signaling in polycystic kidney disease. Kidney International, 2011, 80, 135-138.	2.6	31
60	Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury-where do we stand today?. Nephrology Dialysis Transplantation, 2011, 26, 762-764.	0.4	76
61	Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes. Kidney International, 2011, 80, 405-414.	2.6	175
62	Iron traffics in circulation bound to a siderocalin (Ngal)–catechol complex. Nature Chemical Biology, 2010, 6, 602-609.	3.9	270
63	The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development (Cambridge), 2010, 137, 3835-3845.	1.2	169
64	ROCK inhibition facilitates tissue reconstitution from embryonic kidney cell suspensions. Kidney International, 2010, 77, 387-389.	2.6	4
65	Urinary NGAL Marks Cystic Disease in HIV-Associated Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 1687-1692.	3.0	47
66	Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nature Genetics, 2009, 41, 1295-1302.	9.4	199
67	Scara5 Is a Ferritin Receptor Mediating Non-Transferrin Iron Delivery. Developmental Cell, 2009, 16, 35-46.	3.1	264
68	Vegf as an epithelial cell morphogen modulates branching morphogenesis of embryonic kidney by directly acting on the ureteric bud. Mechanisms of Development, 2009, 126, 91-98.	1.7	32
69	Accumulation of Malignant Renal Stem Cells Is Associated with Epigenetic Changes in Normal Renal Progenitor Genes. Stem Cells, 2008, 26, 1808-1817.	1.4	79
70	WNT/ \hat{l}^2 -catenin signaling in nephron progenitors and their epithelial progeny. Kidney International, 2008, 74, 1004-1008.	2.6	108
71	Unraveling the role of connective tissue growth factor in diabetic nephropathy. Kidney International, 2008, 73, 375-376.	2.6	10
72	\hat{l}^2 -catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development (Cambridge), 2007, 134, 3177-3190.	1.2	87

#	Article	IF	Citations
73	Localization of a Gene for Nonsyndromic Renal Hypodysplasia to Chromosome 1p32-33. American Journal of Human Genetics, 2007, 80, 539-549.	2.6	33
74	Dual Action of Neutrophil Gelatinase–Associated Lipocalin. Journal of the American Society of Nephrology: JASN, 2007, 18, 407-413.	3.0	654
75	c-kit delineates a distinct domain of progenitors in the developing kidney. Developmental Biology, 2006, 299, 238-249.	0.9	54
76	Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Current Opinion in Nephrology and Hypertension, 2006, 15, 442-449.	1.0	203
77	Nephrologists Sans FrontiÃ'res: The art and science of branching. Kidney International, 2006, 69, 1921-1923.	2.6	0
78	Multiple Imprinted and Stemness Genes Provide a Link between Normal and Tumor Progenitor Cells of the Developing Human Kidney. Cancer Research, 2006, 66, 6040-6049.	0.4	127
79	Dissecting Stages of Mesenchymal-to-Epithelial Conversion during Kidney Development. Nephron Physiology, 2006, 104, p56-p60.	1.5	27
80	A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2502-2507.	3.3	98
81	Novel Regulators of Kidney Development from the Tips of the Ureteric Bud. Journal of the American Society of Nephrology: JASN, 2005, 16, 1993-2002.	3.0	118
82	Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. Journal of Clinical Investigation, 2005, 115, 610-621.	3.9	796
83	Detection of intracellular iron by its regulatory effect. American Journal of Physiology - Cell Physiology, 2004, 287, C1547-C1559.	2.1	40
84	A renal biopsy yields sight as well as insight. Nephrology Dialysis Transplantation, 2003, 18, 1937-1938.	0.4	0
85	Vigilant Vector: Heart-Specific Promoter in an Adeno-Associated Virus Vector for Cardioprotection. Hypertension, 2002, 39, 651-655.	1.3	95
86	Hypoxia reverses dibutyrylâ€cAMPâ€induced stellation of cultured astrocytes via activation of the endothelin system. FASEB Journal, 2001, 15, 1227-1229.	0.2	9
87	The multiple actions of angiotensin II in atherosclerosis. Regulatory Peptides, 2000, 93, 65-77.	1.9	165
88	The Discovery of Renin 100 Years Ago. Physiology, 1999, 14, 271-274.	1.6	28
89	Single-Cell Characterization of Endothelin System Gene Expression in the Cerebellum In Situ. Journal of Cardiovascular Pharmacology, 1998, 31, S364-S366.	0.8	17
90	Transcriptional Regulation of Endothelin-1 by Erythropoietin in Endothelial Cells. Journal of Cardiovascular Pharmacology, 1998, 31, S464-S466.	0.8	13