
Tapas Kumar Maji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6080476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Materials, 2007, 6, 142-148.	13.3	734
2	Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption. Angewandte Chemie - International Edition, 2004, 43, 3269-3272.	7.2	379
3	Guest-Induced Asymmetry in a Metalâ^'Organic Porous Solid with Reversible Single-Crystal-to-Single-Crystal Structural Transformation. Journal of the American Chemical Society, 2005, 127, 17152-17153.	6.6	320
4	Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chemical Communications, 2013, 49, 4947.	2.2	269
5	Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials. Coordination Chemistry Reviews, 2014, 273-274, 139-164.	9.5	242
6	Temperature Induced Structural Transformations and Gas Adsorption in the Zeolitic Imidazolate Framework ZIF-8: A Raman Study. Journal of Physical Chemistry A, 2013, 117, 11006-11012.	1.1	212
7	Luminescent Microporous Metal–Organic Framework with Functional Lewis Basic Sites on the Pore Surface: Specific Sensing and Removal of Metal Ions. Inorganic Chemistry, 2012, 51, 10089-10091.	1.9	203
8	Amineâ€Responsive Adaptable Nanospaces: Fluorescent Porous Coordination Polymer for Molecular Recognition. Angewandte Chemie - International Edition, 2014, 53, 11772-11777.	7.2	184
9	Porous lanthanide–organic framework with zeolite-like topology. Chemical Communications, 2005, , 2436.	2.2	179
10	Coordination polymer gels: soft metal–organic supramolecular materials and versatile applications. Chemical Communications, 2016, 52, 8055-8074.	2.2	171
11	Metal-Free Catalysis: A Redox-Active Donor–Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO ₂ Reduction to CH ₄ . Journal of the American Chemical Society, 2021, 143, 16284-16292.	6.6	155
12	Chiral Porous Metal–Organic Frameworks of Co(II) and Ni(II): Synthesis, Structure, Magnetic Properties, and CO ₂ Uptake. Crystal Growth and Design, 2012, 12, 975-981.	1.4	137
13	Chemistry of porous coordination polymers. Pure and Applied Chemistry, 2007, 79, 2155-2177.	0.9	135
14	Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution. Chemical Communications, 2016, 52, 2831-2834.	2.2	128
15	A bimodal anionic MOF: turn-off sensing of Cu ^{II} and specific sensitization of Eu ^{III} . Chemical Communications, 2014, 50, 13567-13570.	2.2	120
16	Perylene Based Porous Polyimides: Tunable, High Surface Area with Tetrahedral and Pyramidal Monomers. Chemistry of Materials, 2012, 24, 969-971.	3.2	115
17	Metal–organic frameworks (MOFs) based on mixed linker systems: structural diversities towards functional materials. CrystEngComm, 2013, 15, 9276.	1.3	115
18	Flexible and Rigid Amineâ€Functionalized Microporous Frameworks Based on Different Secondary Building Units: Supramolecular Isomerism, Selective CO ₂ Capture, and Catalysis. Chemistry - A European Journal, 2014, 20, 4347-4356.	1.7	113

#	Article	IF	CITATIONS
19	Covalent grafting of molecular photosensitizer and catalyst on MOF-808: effect of pore confinement toward visible light-driven CO ₂ reduction in water. Energy and Environmental Science, 2021, 14, 2429-2440.	15.6	113
20	Bimodal Magneto-Luminescent Dysprosium (Dy ^{III})-Potassium (K ^I)-Oxalate Framework: Magnetic Switchability with High Anisotropic Barrier and Solvent Sensing. Chemistry of Materials, 2013, 25, 1673-1679.	3.2	107
21	Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator. Chemical Communications, 2015, 51, 9876-9879.	2.2	102
22	Guestâ€Responsive Reversible Swelling and Enhanced Fluorescence in a Superâ€Absorbent, Dynamic Microporous Polymer. Chemistry - A European Journal, 2012, 18, 4505-4509.	1.7	99
23	Syntheses, Crystal Structures and Adsorption Properties of Ultramicroporous Coordination Polymers Constructed from Hexafluorosilicate Ions and Pyrazine. European Journal of Inorganic Chemistry, 2009, 2009, 2329-2337.	1.0	98
24	A pillared-bilayer porous coordination polymer with a 1D channel and a 2D interlayer space, showing unique gas and vapor sorption. Chemical Communications, 2011, 47, 8106.	2.2	96
25	Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. Journal of Materials Chemistry A, 2017, 5, 13573-13580.	5.2	96
26	Transformation from a 2D Stacked Layer to 3D Interpenetrated Framework by Changing the Spacer Functionality:Â Synthesis, Structure, Adsorption, and Magnetic Properties. Inorganic Chemistry, 2005, 44, 9225-9231.	1.9	95
27	New Interpenetrated Copper Coordination Polymer Frameworks having Porous Properties. Chemistry of Materials, 2009, 21, 5860-5866.	3.2	92
28	Self-cleaning MOF: realization of extreme water repellence in coordination driven self-assembled nanostructures. Chemical Science, 2016, 7, 2251-2256.	3.7	92
29	High heat of hydrogen adsorption and guest-responsive magnetic modulation in a 3D porous pillared-layer coordination framework. Chemical Communications, 2011, 47, 538-540.	2.2	87
30	MOF Nanoâ€Vesicles and Toroids: Selfâ€Assembled Porous Softâ€Hybrids for Light Harvesting. Advanced Functional Materials, 2013, 23, 5585-5590.	7.8	86
31	Unusual room temperature CO2 uptake in a fluoro-functionalized MOF: insight from Raman spectroscopy and theoretical studies. Chemical Communications, 2012, 48, 8487.	2.2	78
32	MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen reduction and oxygen and hydrogen evolution reactions. RSC Advances, 2018, 8, 26728-26754.	1.7	75
33	Co ₃ O ₄ @Co/NCNT Nanostructure Derived from a Dicyanamideâ€Based Metalâ€Organic Framework as an Efficient Biâ€functional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Chemistry - A European Journal, 2017, 23, 18049-18056.	1.7	74
34	Mechanochemical synthesis of a processable halide perovskite quantum dot–MOF composite by post-synthetic metalation. Journal of Materials Chemistry A, 2019, 7, 21106-21111.	5.2	72
35	Versatile functionalities in MOFs assembled from the same building units: interplay of structural flexibility, rigidity and regularity. Journal of Materials Chemistry, 2010, 20, 1322-1331.	6.7	71
36	Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel. Nature Communications, 2021, 12, 7313.	5.8	71

Tapas Kumar Maji

#	Article	IF	CITATIONS
37	A Metal–Organic Framework with Highly Polar Pore Surfaces: Selective CO ₂ Adsorption and Guestâ€Dependent On/Off Emission Properties. Chemistry - A European Journal, 2012, 18, 237-244.	1.7	69
38	Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Transactions, 2014, 43, 7383.	1.6	69
39	Redox-active and semi-conducting donor–acceptor conjugated microporous polymers as metal-free ORR catalysts. Journal of Materials Chemistry A, 2018, 6, 5587-5591.	5.2	69
40	Flexible MOF–aminoclay nanocomposites showing tunable stepwise/gated sorption for C ₂ H ₂ , CO ₂ and separation for CO ₂ /N ₂ and CO ₂ /CH ₄ . Journal of Materials Chemistry A, 2017, 5, 8423-8430.	5.2	67
41	MOF Derived Co ₃ O ₄ @Co/NCNT Nanocomposite for Electrochemical Hydrogen Evolution, Flexible Zinc-Air Batteries, and Overall Water Splitting. Inorganic Chemistry, 2020, 59, 3160-3170.	1.9	67
42	Three-Dimensional Metal–Organic Framework with Highly Polar Pore Surface: H ₂ and CO ₂ Storage Characteristics. Inorganic Chemistry, 2012, 51, 7103-7111.	1.9	66
43	Light driven mesoscale assembly of a coordination polymeric gelator into flowers and stars with distinct properties. Chemical Science, 2015, 6, 6583-6591.	3.7	65
44	Metallophthalocyanine-based redox active metal–organic conjugated microporous polymers for OER catalysis. Chemical Communications, 2018, 54, 4465-4468.	2.2	64
45	MOF–aminoclay composites for superior CO ₂ capture, separation and enhanced catalytic activity in chemical fixation of CO ₂ . Chemical Communications, 2016, 52, 11378-11381.	2.2	62
46	Stabilization of MAPbBr ₃ Perovskite Quantum Dots on Perovskite MOFs by a One-Step Mechanochemical Synthesis. Inorganic Chemistry, 2020, 59, 1436-1443.	1.9	62
47	Extended phenylene based microporous organic polymers with selective carbon dioxide adsorption. Journal of Materials Chemistry, 2011, 21, 12958.	6.7	61
48	Separation/purification of ethylene from an acetylene/ethylene mixture in a pillared-layer porous metal–organic framework. Chemical Communications, 2017, 53, 4907-4910.	2.2	61
49	Redoxâ€Active Metal–Organic Frameworks: Highly Stable Charge‣eparated States through Strut/Guestâ€ŧo‣trut Electron Transfer. Chemistry - A European Journal, 2015, 21, 11701-11706.	1.7	60
50	Binder driven self-assembly of metal-organic cubes towards functional hydrogels. Nature Communications, 2018, 9, 3587.	5.8	59
51	Interpenetration in coordination polymers: structural diversities toward porous functional materials. Materials Today, 2015, 18, 97-116.	8.3	57
52	Diversity in magnetic properties of 3D isomorphous networks of Co(ii) and Mn(ii) constructed by napthalene-1,4-dicarboxylate. Chemical Communications, 2005, , 4613.	2.2	56
53	Terbium(III), Europium(III), and Mixed Terbium(III)–Europium(III) Mucicate Frameworks: Hydrophilicity and Stoichiometry-Dependent Color Tunability. Inorganic Chemistry, 2012, 51, 4891-4893.	1.9	55
54	Highly Luminescent Microporous Organic Polymer with Lewis Acidic Boron Sites on the Pore Surface: Ratiometric Sensing and Capture of F ^{â^'} lons. Chemistry - A European Journal, 2015, 21, 10799-10804.	1.7	55

#	Article	IF	CITATIONS
55	Stoichiometry-Controlled Two Flexible Interpenetrated Frameworks: Higher CO ₂ Uptake in a Nanoscale Counterpart Supported by Accelerated Adsorption Kinetics. Inorganic Chemistry, 2014, 53, 5993-6002.	1.9	54
56	High aspect ratio, processable coordination polymer gel nanotubes based on an AIE-active LMWG with tunable emission. Chemical Communications, 2015, 51, 14678-14681.	2.2	54
57	Synthesis, Characterization, and Modeling of a Functional Conjugated Microporous Polymer: CO ₂ Storage and Light Harvesting. Journal of Physical Chemistry C, 2014, 118, 24369-24376.	1.5	53
58	Regulating Chargeâ€Transfer in Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2019, 25, 3867-3874.	1.7	51
59	Guest-Specific Double- or Single-Step Adsorption in a Flexible Porous Framework Based on a Mixed-Ligand System. Inorganic Chemistry, 2011, 50, 400-402.	1.9	48
60	Dynamic Entangled Porous Framework for Hydrocarbon (C2–C3) Storage, CO ₂ Capture, and Separation. Chemistry - A European Journal, 2016, 22, 6059-6070.	1.7	48
61	Coordination Polymer Gels with Modular Nanomorphologies, Tunable Emissions, and Stimuli-Responsive Behavior Based on an Amphiphilic Tripodal Gelator. Inorganic Chemistry, 2017, 56, 9417-9425.	1.9	48
62	Visibleâ€Lightâ€Driven Photocatalytic CO ₂ Reduction to CO/CH ₄ Using a Metal–Organic "Soft―Coordination Polymer Gel. Angewandte Chemie - International Edition, 2022, 61,	7.2	48
63	Crystal Dynamics in Multiâ€stimuliâ€Responsive Entangled Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 15864-15873.	1.7	46
64	Luminescent Metal–Organic Complexes of Pyrene or Anthracene Chromophores: Energy Transfer Assisted Amplified Exciplex Emission and Al ³⁺ Sensing. Crystal Growth and Design, 2016, 16, 82-91.	1.4	44
65	Photo-modulated wide-spectrum chromism in Eu ³⁺ and Eu ³⁺ /Tb ³⁺ photochromic coordination polymer gels: application in decoding secret information. Chemical Science, 2021, 12, 2674-2682.	3.7	44
66	Coordination-Driven Fluorescent J-Aggregates in a Perylenetetracarboxylate-Based MOF: Permanent Porosity and Proton Conductivity. Journal of Physical Chemistry C, 2016, 120, 13622-13629.	1.5	42
67	Topological Difference in 2D Layers Steers the Formation of Rigid and Flexible 3D Supramolecular Isomers: Impact on the Adsorption Properties. Inorganic Chemistry, 2012, 51, 9141-9143.	1.9	41
68	Dynamic, conjugated microporous polymers: visible light harvesting via guest-responsive reversible swelling. Physical Chemistry Chemical Physics, 2016, 18, 156-163.	1.3	41
69	Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF toward Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 25220-25231.	4.0	41
70	Honeycomb Porous Framework of Zinc(II): Effective Host for Palladium Nanoparticles for Efficient Three omponent (A ³) Coupling and Selective Gas Storage. ChemPlusChem, 2012, 77, 743-747.	1.3	38
71	Porous polyimides from polycyclic aromatic linkers: Selective CO2 capture and hydrogen storage. Polymer, 2014, 55, 1452-1458.	1.8	37
72	Recent advances in coordination-driven polymeric gel materials: design and applications. Dalton Transactions, 2020, 49, 7658-7672.	1.6	37

Tapas Kumar Maji

#	Article	IF	CITATIONS
73	Exciplex Formation and Energy Transfer in a Selfâ€Assembled Metal–Organic Hybrid System. Chemistry - A European Journal, 2012, 18, 5848-5852.	1.7	36
74	Oligo(<i>p</i> -phenyleneethynylene)-Derived Porous Luminescent Nanoscale Coordination Polymer of Gd ^{III} : Bimodal Imaging and Nitroaromatic Sensing. Journal of Physical Chemistry C, 2014, 118, 12241-12249.	1.5	36
75	Understanding guest and pressureâ€induced porosity through structural transition in flexible interpenetrated MOF by Raman spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 149-155.	1.2	36
76	Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties. APL Materials, 2014, 2, .	2.2	35
77	Selective carbon dioxide uptake and crystal-to-crystal transformation: porous 3D framework to 1D chain triggered by conformational change of the spacer. CrystEngComm, 2012, 14, 684-690.	1.3	34
78	Luminescent metal–organic frameworks and their potential applications. Journal of Chemical Sciences, 2020, 132, 1.	0.7	34
79	Oriented attachment growth of anisotropic meso/nanoscale MOFs: tunable surface area and CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 20959-20968.	5.2	33
80	¹¹³ Cd Nuclear Magnetic Resonance as a Probe of Structural Dynamics in a Flexible Porous Framework Showing Selective O ₂ /N ₂ and CO ₂ /N ₂ Adsorption. Inorganic Chemistry, 2016, 55, 4166-4172.	1.9	31
81	Metallated azo-naphthalene diimide based redox-active porous organic polymer as an efficient water oxidation electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 19834-19842.	5.2	31
82	In situ Stabilization of Au and Co Nanoparticles in a Redox-Active Conjugated Microporous Polymer Matrix: Facile Heterogeneous Catalysis and Electrocatalytic Oxygen Reduction Reaction Activity. ACS Applied Materials & Interfaces, 2019, 11, 5455-5461.	4.0	31
83	Construction of a 2D Rectangular Grid and 3D Diamondoid Interpenetrated Frameworks and Their Functionalities by Changing the Second Spacers. European Journal of Inorganic Chemistry, 2010, 2010, 3762-3769.	1.0	30
84	Host–Guest [2+2] Cycloaddition Reaction: Postsynthetic Modulation of CO ₂ Selectivity and Magnetic Properties in a Bimodal Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 7792-7799.	1.7	30
85	Colocalization of light harvesting and catalytic units in a †̃soft' coordination polymer hydrogel toward visible-light driven photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 13608-13614.	5.2	30
86	Tailoring a robust Al-MOF for trapping C ₂ H ₆ and C ₂ H ₂ towards efficient C ₂ H ₄ purification from quaternary mixtures. Chemical Science, 2022, 13, 7172-7180.	3.7	30
87	Inâ€situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithiumâ€ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1115-1118.	0.6	29
88	Photochromic Conjugated Microporous Polymer Manifesting Bio-Inspired pcFRET and Logic Gate Functioning. ACS Applied Materials & amp; Interfaces, 2020, 12, 20991-20997.	4.0	28
89	Amineâ€Templated Cobalt(II) Coordination Polymer Exhibiting Novel Magnetic Properties: Effect of Dehydration. European Journal of Inorganic Chemistry, 2011, 2011, 2057-2063.	1.0	26
90	In Situ Growth of Self-Assembled ZIF-8–Aminoclay Nanocomposites with Enhanced Surface Area and CO ₂ Uptake. Inorganic Chemistry, 2017, 56, 9426-9435.	1.9	26

#	Article	IF	CITATIONS
91	Stabilization of ultra-small gold nanoparticles in a photochromic organic cage: modulating photocatalytic CO ₂ reduction by tuning light irradiation. Journal of Materials Chemistry A, 2021, 9, 5780-5786.	5.2	26
92	Effect of Pillar Modules and Their Stoichiometry in 3D Porous Frameworks of Zn(II) with [Fe(CN) ₆] ^{3–} : High CO ₂ /N ₂ and CO ₂ /CH ₄ Selectivity. Inorganic Chemistry, 2013, 52, 11385-11397.	1.9	25
93	Triphenylamine and terpyridine–zinc(<scp>ii</scp>) complex based donor–acceptor soft hybrid as a visible light-driven hydrogen evolution photocatalyst. Journal of Materials Chemistry A, 2020, 8, 21968-21972.	5.2	25
94	A flexible supramolecular host with a crowned chair octameric water cluster and highly selective adsorption properties. CrystEngComm, 2010, 12, 2775.	1.3	24
95	Pure white light emission and charge transfer in organogels of symmetrical and unsymmetrical ï€-chromophoric oligo- <i>p</i> -(phenyleneethynylene) bola-amphiphiles. Chemical Communications, 2018, 54, 275-278.	2.2	24
96	Pillared-bilayer porous coordination polymers of Zn(<scp>ii</scp>): enhanced hydrophobicity of pore surface by changing the pillar functionality. CrystEngComm, 2015, 17, 3478-3486.	1.3	23
97	Bimodal self-assembly of an amphiphilic gelator into a hydrogel-nanocatalyst and an organogel with different morphologies and photophysical properties. Chemical Communications, 2016, 52, 13136-13139.	2.2	23
98	Colossal Increase in Electric Current and High Rectification Ratio in a Photoconducting, Self-Cleaning, and Luminescent Schottky Barrier NMOF Diode. Journal of Physical Chemistry C, 2017, 121, 23803-23810.	1.5	23
99	Guestâ€Responsive Reversible Electron Transfer in a Crystalline Porous Framework Supported by a Dynamic Building Node. Angewandte Chemie - International Edition, 2020, 59, 18479-18484.	7.2	23
100	Reversible Polymorphism, Liquid Crystallinity, and Stimuli-Responsive Luminescence in a Bola-amphiphilic π-System: Structure–Property Correlations Through Nanoindentation and DFT Calculations. Journal of Physical Chemistry Letters, 2016, 7, 4086-4092.	2.1	22
101	Nanovesicular MOF with Omniphilic Porosity: Bimodal Functionality for White-Light Emission and Photocatalysis by Dye Encapsulation. ACS Applied Materials & Interfaces, 2018, 10, 23140-23146.	4.0	22
102	Solvent Adaptive Dynamic Metalâ€Organic Soft Hybrid for Imaging and Biological Delivery. Angewandte Chemie - International Edition, 2019, 58, 5008-5012.	7.2	22
103	Transfer hydrogenation of alkynes into alkenes by ammonia borane over Pd-MOF catalysts. Dalton Transactions, 2020, 49, 5024-5028.	1.6	22
104	Synergistic Role of Microwave and Perturbation toward Synthesis of Hierarchical Porous MOFs with Tunable Porosity. Inorganic Chemistry, 2020, 59, 3775-3782.	1.9	22
105	Two 3D metal–organic frameworks of Cd(<scp>ii</scp>): modulation of structures and porous properties based on linker functionalities. CrystEngComm, 2014, 16, 4877-4885.	1.3	21
106	Multi-dimensional metal-organic frameworks based on mixed linkers: Interplay between structural flexibility and functionality. Coordination Chemistry Reviews, 2022, 469, 214645.	9.5	21
107	Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous and Mesoporous Materials, 2015, 206, 127-135.	2.2	20
108	Charge-Assisted Self-Assembly of ZIF-8 and Laponite Clay toward a Functional Hydrogel Nanocomposite. Inorganic Chemistry, 2018, 57, 14480-14483.	1.9	19

#	Article	IF	CITATIONS
109	Realization of Oxygen Reduction and Evolution Electrocatalysis by In Situ Stabilization of Co Nanoparticles in a Redoxâ€Active Donorâ€Acceptor Porous Organic Polymer. ChemElectroChem, 2019, 6, 3756-3763.	1.7	19
110	Fluorocarbon-Functionalized Superhydrophobic Metal–Organic Framework: Enhanced CO ₂ Uptake via Photoinduced Postsynthetic Modification. Inorganic Chemistry, 2021, 60, 3823-3833.	1.9	19
111	Tetracarboxylate Linker-Based Flexible Cu ^{II} Frameworks: Efficient Separation of CO ₂ from CO ₂ /N ₂ and C ₂ H ₂ from C ₂ H ₂ /C ₂ H ₄ Mixtures. ACS Omega, 2018, 3, 2018-2026.	1.6	18
112	Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorganic Chemistry, 2020, 59, 8251-8258.	1.9	18
113	Shape assisted fabrication of fluorescent cages of squarate based metal–organic coordination frameworks. Chemical Communications, 2013, 49, 3937.	2.2	17
114	Highly rigid and stable porous Cu(i) metal–organic framework with reversible single-crystal-to-single-crystal structural transformation. CrystEngComm, 2012, 14, 4153.	1.3	16
115	A Nanoporous Borocarbonitride (BC ₄ N) with Novel Properties Derived from a Boronâ€Imidazolateâ€Based Metal–Organic Framework. Chemistry - A European Journal, 2013, 19, 6966-6970.	1.7	16
116	Nanocomposite Hydrogel of Pd@ZIFâ€8 and Laponite [®] : Size‣elective Hydrogenation Catalyst under Mild Conditions. Chemistry - A European Journal, 2021, 27, 3268-3272.	1.7	16
117	Binary/Ternary MOF Nanocomposites for Multiâ€Environment Indoor Atmospheric Water Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	16
118	Construction of bi-functional inorganic–organic hybrid nanocomposites. Journal of Materials Chemistry, 2008, 18, 5448.	6.7	15
119	Rational design of a pyrene based luminescent porous supramolecular framework: excimer emission and energy transfer. RSC Advances, 2015, 5, 74986-74993.	1.7	15
120	A 2-D coordination polymer incorporating cobalt(<scp>ii</scp>), 2-sulfoterephthalate and the flexible bridging ligand 1,3-di(4-pyridyl)propane. Inorganic Chemistry Frontiers, 2015, 2, 157-163.	3.0	14
121	Facile and Green Synthesis of SERS Active and Ferromagnetic Silver Nanorods. European Journal of Inorganic Chemistry, 2010, 2010, 4969-4974.	1.0	13
122	<i>Gfp</i> chromophore integrated conjugated microporous polymers: topological and ESPT effects on emission properties. Chemical Communications, 2019, 55, 2837-2840.	2.2	13
123	Visibleâ€Lightâ€Driven Photocatalytic CO ₂ Reduction to CO/CH ₄ Using a Metal–Organic "Soft―Coordination Polymer Gel. Angewandte Chemie, 2022, 134, .	1.6	13
124	A bimetallic pillared-layer metal–organic coordination framework with a 3D biporous structure. Dalton Transactions, 2009, , 4426.	1.6	12
125	A hexanuclear Cu(<scp>i</scp>) cluster supported by cuprophilic interaction: effects of aromatics on luminescence properties. RSC Advances, 2014, 4, 35167-35170.	1.7	12
126	Photoswitchable J-Aggregated Processable Organogel by Integrating a Photochromic Acceptor. Journal of Organic Chemistry, 2019, 84, 10946-10952.	1.7	11

#	Article	IF	CITATIONS
127	Bimodal Heterogeneous Functionality in Redoxâ€Active Conjugated Microporous Polymer toward Electrocatalytic Oxygen Reduction and Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 3810-3817.	1.7	11
128	A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences. Angewandte Chemie - International Edition, 2021, 60, 19921-19927.	7.2	11
129	An excited-state intramolecular proton-transfer responsive nanoscale MOF for dual sensing of water and chromate ions. Journal of Materials Chemistry C, 2022, 10, 7558-7566.	2.7	11
130	Excitation Energy Transfer Supported Amplified Charge-Transfer Emission in an Anthracenedicarboxylate- and Bipyridophenazine-Based Coordination Complex. Inorganic Chemistry, 2018, 57, 2953-2956.	1.9	10
131	Solvent-Modulated Emission Properties in a Superhydrophobic Oligo(p-phenyleneethynylene)-Based 3D Porous Supramolecular Framework. Inorganic Chemistry, 2018, 57, 8693-8696.	1.9	10
132	Chargeâ€Transfer Nanostructures through Noncovalent Amphiphilic Selfâ€Assembly: Extended Cofacial Donorâ€Acceptor Arrays. Asian Journal of Organic Chemistry, 2014, 3, 161-169.	1.3	9
133	A discrete Cull6 cluster and a 3D Mn ^{II} –Cu ^{II} framework based on assembly of Mn ₂ Cu ₄ clusters: synthesis, structure and magnetic properties. Dalton Transactions, 2016, 45, 15523-15531.	1.6	9
134	Solvent Adaptive Dynamic Metalâ€Organic Soft Hybrid for Imaging and Biological Delivery. Angewandte Chemie, 2019, 131, 5062-5066.	1.6	9
135	Acetylene/Ethylene Separation and Solid-State Structural Transformation via [2 + 2] Cycloaddition Reactions in 3D Microporous Zn ^{II} Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 9055-9064.	1.9	9
136	Modulating Hierarchical Micro/Mesoporosity by a Mixed Solvent Approach in Alâ€MOF: Stabilization of MAPbBr 3 Quantum Dots. Chemistry - A European Journal, 2020, 26, 14671-14678.	1.7	9
137	1D chains, 2D networks and 3D interdigitated frameworks of isoorotic acid or 4,4′-bipyridyl and isoorotic acid: syntheses, structures, and sorption properties. Inorganic Chemistry Frontiers, 2015, 2, 278-289.	3.0	8
138	Synthesis and Structural Characterization of 1D and 2D Coordination Polymers based on Flexible 1, 3â€Adamantanediacetic Acid and <i>Exo</i> â€bidentate Organic Linkers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1102-1108.	0.6	7
139	Polar functional groups anchored to a 2D MOF template for the stabilization of Pd(0) nps for the catalytic C–C coupling reaction. Dalton Transactions, 2019, 48, 7117-7121.	1.6	7
140	Adaptive and Guest Responsive Supramolecular Porous Framework: Solvent Modulated Energy Transfer toward Fingerprint Sensing. Crystal Growth and Design, 2019, 19, 1514-1517.	1.4	7
141	Multicolour lanthanide(<scp>iii</scp>) porous 1D coordination polymers: tunable wide spectrum emission and efficient Cu ^{II} sensing. Dalton Transactions, 2021, 50, 13002-13011.	1.6	7
142	Chapter 12. Gated and Stepwise Sorption Processes in Functional Metal-organic Frameworks. Monographs in Supramolecular Chemistry, 0, , 412-453.	0.2	7
143	A two-fold interpenetrated flexible bi-pillared-layer framework of Fe(II) with interesting solvent adsorption property. Journal of Chemical Sciences, 2011, 123, 883-890.	0.7	6
144	Tunable Physical States and Optical Properties of Bola-Amphiphilic Oligo-(<i>p</i> -phenyleneethynylene)-Based Supramolecular Networks Assisted by Functional Group Modulation. Journal of Physical Chemistry C, 2018, 122, 21598-21606.	1.5	6

#	Article	IF	CITATIONS
145	Dynamic Resolution of Piezosensitivity in Single Crystals of π onjugated Molecules. Chemistry - A European Journal, 2019, 25, 6092-6097.	1.7	6
146	Guest-Responsive Reversal in Structural Transformation after a [2 + 2] Topochemical Reaction in a 3D Pillared Layer MOF: Uncovering the Role of C–H···O Interaction. Inorganic Chemistry, 2020, 59, 12793-12801.	1.9	6
147	Fabrication of supramolecular frameworks by tuning the binding site of a tripodal ligand with d 10 metal ions: Interplay of covalent and non-covalent interactions in solid-state structure. Journal of Chemical Sciences, 2010, 122, 801-806.	0.7	5
148	Fragile magnetic ground state of a spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2metal-organic kagome lattice. Physical Review B, 2020, 101, .</mml:mn></mml:mfrac></mml:math 	nn 1. 4/mml	:m f rac>
149	Potential of hydrophobic metal-organic framework-based materials for environmental applications. , 2019, , 319-354.		3
150	Coordination driven self-assembly of donor-acceptor linkers in 3D supramolecular frameworks: Ground state charge transfer and tunable porosity. Materials Research Bulletin, 2021, 142, 111388.	2.7	3
151	Self-assembled organic and hybrid materials derived from oligo-(<i>p</i> -phenyleneethynylenes). Chemical Communications, 2022, 58, 4149-4167.	2.2	3
152	Unraveling high alkene selectivity at full conversion in alkyne hydrogenation over Ni under continuous flow conditions. Catalysis Science and Technology, 2022, 12, 5265-5273.	2.1	3
153	Preface to the "Metal–Organic Frameworks: Fundamental Study and Applications―Joint Virtual Issue. Langmuir, 2020, 36, 14901-14903.	1.6	2
154	Two 3D supramolecular frameworks assembled from the dinuclear building block: A crystallographic evidence of carboxylate(O)…π interaction. Journal of Chemical Sciences, 2014, 126, 1153-1161.	0.7	1
155	Guestâ€Responsive Reversible Electron Transfer in a Crystalline Porous Framework Supported by a Dynamic Building Node. Angewandte Chemie, 2020, 132, 18637-18642.	1.6	1
156	Semiconductivity and superhydrophobicity in an oligo-(p-phenyleneethynylene) (OPE)-based luminescent MOF. Bulletin of Materials Science, 2020, 43, 1.	0.8	1
157	Cover Picture: Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption (Angew. Chem. Int. Ed. 25/2004). Angewandte Chemie - International Edition, 2004, 43, 3205-3205.	7.2	0
158	Porous Hybrids: MOF Nanoâ€Vesicles and Toroids: Selfâ€Assembled Porous Softâ€Hybrids for Light Harvesting (Adv. Funct. Mater. 45/2013). Advanced Functional Materials, 2013, 23, 5684-5684.	7.8	0
159	Interpenetrated Metal–Organic Frameworks with [Ag(CN)2]â^' Bridging Ligand: Synthesis, Structural Characterization and Magnetic Study. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 243-249.	0.8	0
160	A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences. Angewandte Chemie, 2021, 133, 20074-20080.	1.6	0