Daeseung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/608010/publications.pdf

Version: 2024-02-01

18	202	8	14
papers	citations	h-index	g-index
18	18	18	175
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Simulation of Postoperative Facial Appearances via Geometric Deep Learning for Efficient Orthognathic Surgical Planning. IEEE Transactions on Medical Imaging, 2023, 42, 336-345.	8.9	8
2	Midsagittal Plane First: Building a Strong Facial Reference Frame for Computer-Aided Surgical Simulation. Journal of Oral and Maxillofacial Surgery, 2022, 80, 641-650.	1.2	4
3	Deep learning for biomechanical modeling of facial tissue deformation in orthognathic surgical planning. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 945-952.	2.8	11
4	Deep Simulation of Facial Appearance Changes Following Craniomaxillofacial Bony Movements in Orthognathic Surgical Planning. Lecture Notes in Computer Science, 2021, 12904, 459-468.	1.3	4
5	A Self-supervised Deep Framework forÂReference Bony Shape Estimation inÂOrthognathic Surgical Planning. Lecture Notes in Computer Science, 2021, 12904, 469-477.	1.3	2
6	Unsupervised Learning of Reference Bony Shapes for Orthognathic Surgical Planning with a Surface Deformation Network. Medical Physics, 2021, 48, 7735.	3.0	6
7	A novel incremental simulation of facial changes following orthognathic surgery using FEM with realistic lip sliding effect. Medical Image Analysis, 2021, 72, 102095.	11.6	7
8	Estimating Reference Bony Shape Models for Orthognathic Surgical Planning Using 3D Point-Cloud Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2958-2966.	6.3	17
9	Clinical Evaluation of Digital Dental Articulation for One-Piece Maxillary Surgery. Journal of Oral and Maxillofacial Surgery, 2020, 78, 799-805.	1.2	6
10	An automatic approach to establish clinically desired final dental occlusion for one-piece maxillary orthognathic surgery. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1763-1773.	2.8	14
11	A New Approach of Predicting Facial Changes Following Orthognathic Surgery Using Realistic Lip Sliding Effect. Lecture Notes in Computer Science, 2019, 11768, 336-344.	1.3	13
12	An Automatic Approach to Reestablish Final Dental Occlusion for 1-Piece Maxillary Orthognathic Surgery. Lecture Notes in Computer Science, 2019, 11768, 345-353.	1.3	6
13	Estimating Reference Bony Shape Model for Personalized Surgical Reconstruction of Posttraumatic Facial Defects. Lecture Notes in Computer Science, 2019, 11768, 327-335.	1.3	5
14	An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation. Biomechanics and Modeling in Mechanobiology, 2018, 17, 387-402.	2.8	3
15	Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 2129-2143.	2.8	46
16	A clinically validated prediction method for facial softâ€tissue changes following doubleâ€jaw surgery. Medical Physics, 2017, 44, 4252-4261.	3.0	26
17	Improved Rubin–Bodner model for the prediction of soft tissue deformations. Medical Engineering and Physics, 2016, 38, 1369-1375.	1.7	6
18	An eFace-Template Method for Efficiently Generating Patient-Specific Anatomically-Detailed Facial Soft Tissue FE Models for Craniomaxillofacial Surgery Simulation. Annals of Biomedical Engineering, 2016, 44, 1656-1671.	2.5	18