Michael Henry Malim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6080047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature, 2002, 418, 646-650.	13.7	2,093
2	DNA Deamination Mediates Innate Immunity to Retroviral Infection. Cell, 2003, 113, 803-809.	13.5	1,247
3	Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nature Microbiology, 2020, 5, 1598-1607.	5.9	1,115
4	The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nature Medicine, 2003, 9, 1404-1407.	15.2	867
5	Functional dissection of the HIV-1 Rev trans-activator—Derivation of a trans-dominant repressor of Rev function. Cell, 1989, 58, 205-214.	13.5	831
6	THE HIV-1 REV PROTEIN. Annual Review of Microbiology, 1998, 52, 491-532.	2.9	644
7	Human Immunodeficiency Virus Type 1 Spinoculation Enhances Infection through Virus Binding. Journal of Virology, 2000, 74, 10074-10080.	1.5	608
8	Cytidine Deamination of Retroviral DNA by Diverse APOBEC Proteins. Current Biology, 2004, 14, 1392-1396.	1.8	576
9	Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature, 2016, 530, 51-56.	13.7	550
10	Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature, 2013, 502, 559-562.	13.7	505
11	HIV-1 structural gene expression requires binding of the rev trans-activator to its RNA target sequence. Cell, 1990, 60, 675-683.	13.5	503
12	Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncology, The, 2021, 22, 765-778.	5.1	491
13	HIV-1 Accessory Proteins—Ensuring Viral Survival in a Hostile Environment. Cell Host and Microbe, 2008, 3, 388-398.	5.1	481
14	HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: Implications for HIV-1 latency. Cell, 1991, 65, 241-248.	13.5	452
15	Antiviral Function of APOBEC3G Can Be Dissociated from Cytidine Deaminase Activity. Current Biology, 2005, 15, 166-170.	1.8	439
16	HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006940-a006940.	2.9	421
17	HIV-1 Regulatory/Accessory Genes: Keys to Unraveling Viral and Host Cell Biology. Science, 1998, 280, 1880-1884.	6.0	363
18	Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nature Medicine, 2020, 26, 1701-1707.	15.2	315

#	Article	IF	CITATIONS
19	Defining APOBEC3 Expression Patterns in Human Tissues and Hematopoietic Cell Subsets. Journal of Virology, 2009, 83, 9474-9485.	1.5	298
20	Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature, 2021, 594, 88-93.	13.7	293
21	APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation. Journal of Biological Chemistry, 2007, 282, 2587-2595.	1.6	274
22	APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts. PLoS Pathogens, 2008, 4, e1000231.	2.1	274
23	Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination. Journal of Virology, 2006, 80, 8450-8458.	1.5	261
24	Antiviral Protein APOBEC3G Localizes to Ribonucleoprotein Complexes Found in P Bodies and Stress Granules. Journal of Virology, 2007, 81, 2165-2178.	1.5	254
25	APOBEC-mediated viral restriction: not simply editing?. Trends in Biochemical Sciences, 2007, 32, 118-128.	3.7	254
26	HIV-1 and interferons: who's interfering with whom?. Nature Reviews Microbiology, 2015, 13, 403-413.	13.6	251
27	Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature Medicine, 1998, 4, 1397-1400.	15.2	249
28	APOBEC proteins and intrinsic resistance to HIV-1 infection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 675-687.	1.8	236
29	APOBEC-Mediated Editing of Viral RNA. Science, 2004, 305, 645-645.	6.0	223
30	Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins. Journal of Virology, 2009, 83, 494-497.	1.5	217
31	A Sensitive, Quantitative Assay for Human Immunodeficiency Virus Type 1 Integration. Journal of Virology, 2002, 76, 10942-10950.	1.5	200
32	HIV-1 Infection Requires a Functional Integrase NLS. Molecular Cell, 2001, 7, 1025-1035.	4.5	189
33	Identification of Amino Acid Residues in APOBEC3G Required for Regulation by Human Immunodeficiency Virus Type 1 Vif and Virion Encapsidation. Journal of Virology, 2007, 81, 3807-3815.	1.5	186
34	HIV-1 Sequence Variation. Cell, 2001, 104, 469-472.	13.5	174
35	cis Expression of DC-SIGN Allows for More Efficient Entry of Human and Simian Immunodeficiency Viruses via CD4 and a Coreceptor. Journal of Virology, 2001, 75, 12028-12038.	1.5	170
36	[31] Secreted placental alkaline phosphatase as a eukaryotic reporter gene. Methods in Enzymology, 1992, 216, 362-368.	0.4	166

#	Article	IF	CITATIONS
37	RNA-Dependent Oligomerization of APOBEC3G Is Required for Restriction of HIV-1. PLoS Pathogens, 2009, 5, e1000330.	2.1	155
38	Unusual Polymorphisms in Human Immunodeficiency Virus Type 1 Associated with Nonprogressive Infection. Journal of Virology, 2000, 74, 4361-4376.	1.5	152
39	Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nature Immunology, 2016, 17, 204-213.	7.0	148
40	Reassessment of the Roles of Integrase and the Central DNA Flap in Human Immunodeficiency Virus Type 1 Nuclear Import. Journal of Virology, 2002, 76, 12087-12096.	1.5	142
41	Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γÎ′T cell biology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1039-1044.	3.3	133
42	The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study. Lancet Rheumatology, The, 2021, 3, e627-e637.	2.2	132
43	Characterization of the Alpha Interferon-Induced Postentry Block to HIV-1 Infection in Primary Human Macrophages and T Cells. Journal of Virology, 2010, 84, 9254-9266.	1.5	130
44	APOBEC-mediated interference with hepadnavirus production. Hepatology, 2005, 42, 301-309.	3.6	128
45	Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO Journal, 2004, 23, 2632-2640.	3.5	124
46	The HIV-1 Rev protein: prototype of a novel class of eukaryotic post-transcriptional regulators. Trends in Biochemical Sciences, 1991, 16, 346-350.	3.7	116
47	Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity, 2021, 54, 1276-1289.e6.	6.6	112
48	Pharmacological Cyclin-Dependent Kinase Inhibitors Inhibit Replication of Wild-Type and Drug-Resistant Strains of Herpes Simplex Virus and Human Immunodeficiency Virus Type 1 by Targeting Cellular, Not Viral, Proteins. Journal of Virology, 2002, 76, 7874-7882.	1.5	109
49	Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study. Lancet Microbe, The, 2021, 2, e461-e471.	3.4	109
50	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	4.7	107
51	Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings. PLoS Pathogens, 2020, 16, e1008817.	2.1	105
52	Human APOBEC3G-Mediated Editing Can Promote HIV-1 Sequence Diversification and Accelerate Adaptation to Selective Pressure. Journal of Virology, 2010, 84, 10402-10405.	1.5	103
53	A highly conserved RNA folding region coincident with the Rev response element of primate immunodeficiency viruses. Nucleic Acids Research, 1990, 18, 1613-1623.	6.5	101
54	Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4 ⁺ T Cells Is Associated with Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination. Journal of Virology, 2013, 87, 1508-1517.	1.5	100

#	Article	IF	CITATIONS
55	Ability of the V3 Loop of Simian Immunodeficiency Virus To Serve as a Target for Antibody-Mediated Neutralization: Correlation of Neutralization Sensitivity, Growth in Macrophages, and Decreased Dependence on CD4. Journal of Virology, 2001, 75, 3903-3915.	1.5	98
56	Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nature Microbiology, 2021, 6, 1433-1442.	5.9	94
57	Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology, 2012, 9, 53.	0.9	90
58	Transfer of the Amino-Terminal Nuclear Envelope Targeting Domain of Human MX2 Converts MX1 into an HIV-1 Resistance Factor. Journal of Virology, 2014, 88, 9017-9026.	1.5	87
59	Promiscuous RNA Binding Ensures Effective Encapsidation of APOBEC3 Proteins by HIV-1. PLoS Pathogens, 2015, 11, e1004609.	2.1	86
60	Hypermutation of an Ancient Human Retrovirus by APOBEC3G. Journal of Virology, 2008, 82, 8762-8770.	1.5	84
61	Human APOBEC3 Induced Mutation of Human Immunodeficiency Virus Type-1 Contributes to Adaptation and Evolution in Natural Infection. PLoS Pathogens, 2014, 10, e1004281.	2.1	83
62	Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C. Hepatology, 2007, 46, 682-689.	3.6	79
63	Deep sequencing of HIV-1 reverse transcripts reveals the multifaceted antiviral functions of APOBEC3G. Nature Microbiology, 2018, 3, 220-233.	5.9	79
64	In Vivo Attenuation of Simian Immunodeficiency Virus by Disruption of a Tyrosine-Dependent Sorting Signal in the Envelope Glycoprotein Cytoplasmic Tail. Journal of Virology, 2001, 75, 278-291.	1.5	78
65	Sequence Requirements for Rev Multimerization in Vivo. Virology, 1994, 202, 186-194.	1.1	77
66	DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nature Immunology, 2003, 4, 641-643.	7.0	77
67	Further Investigation of Simian Immunodeficiency Virus Vif Function in Human Cells. Journal of Virology, 2004, 78, 12041-12046.	1.5	77
68	Expression strategies of the yeast retrotransposon Ty: a short sequence directs ribosomal frameshifting. Nucleic Acids Research, 1986, 14, 7001-7016.	6.5	74
69	Comparison of Cellular Ribonucleoprotein Complexes Associated with the APOBEC3F and APOBEC3G Antiviral Proteins. Journal of Virology, 2008, 82, 5636-5642.	1.5	74
70	The SOCS-Box of HIV-1 Vif Interacts with ElonginBC by Induced-Folding to Recruit Its Cul5-Containing Ubiquitin Ligase Complex. PLoS Pathogens, 2010, 6, e1000925.	2.1	72
71	Humoral and cellular immunogenicity to a second dose of COVID-19 vaccine BNT162b2 in people receiving methotrexate or targeted immunosuppression: a longitudinal cohort study. Lancet Rheumatology, The, 2022, 4, e42-e52.	2.2	66
72	TRIM5α Cytoplasmic Bodies Are Highly Dynamic Structures. Molecular Biology of the Cell, 2007, 18, 2102-2111.	0.9	61

#	Article	IF	CITATIONS
73	SRp40 and SRp55 Promote the Translation of Unspliced Human Immunodeficiency Virus Type 1 RNA. Journal of Virology, 2010, 84, 6748-6759.	1.5	60
74	Target Cell-Mediated Editing of HIV-1 cDNA by APOBEC3 Proteins in Human Macrophages. Journal of Virology, 2011, 85, 13448-13452.	1.5	59
75	A Triple-Arginine Motif in the Amino-Terminal Domain and Oligomerization Are Required for HIV-1 Inhibition by Human MX2. Journal of Virology, 2015, 89, 4676-4680.	1.5	59
76	Estimates of the rate of infection and asymptomatic COVID-19 disease in a population sample from SE England. Journal of Infection, 2020, 81, 931-936.	1.7	59
77	Comprehensive Investigation of the Molecular Defect in vif -Deficient Human Immunodeficiency Virus Type 1 Virions. Journal of Virology, 2003, 77, 5810-5820.	1.5	59
78	Retrovirus RNA Trafficking: From Chromatin to Invasive Genomes. Traffic, 2006, 7, 1440-1450.	1.3	56
79	Cytidine deamination and resistance to retroviral infection: towards a structural understanding of the APOBEC proteins. Virology, 2005, 334, 147-153.	1.1	55
80	Single dose of BNT162b2 mRNA vaccine against severe acute respiratory syndrome coronavirusâ€2 (SARSâ€CoVâ€2) induces neutralising antibody and polyfunctional Tâ€cell responses in patients with chronic myeloid leukaemia. British Journal of Haematology, 2021, 194, 999-1006.	1.2	55
81	Biochemical Analyses of the Interactions between Human Immunodeficiency Virus Type 1 Vpr and p6 Gag. Journal of Virology, 2001, 75, 10537-10542.	1.5	54
82	Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection. Retrovirology, 2013, 10, 23.	0.9	54
83	The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry. Nature Microbiology, 2018, 3, 1369-1376.	5.9	54
84	lmmunoproteasome activation enables human TRIM5α restriction of HIV-1. Nature Microbiology, 2019, 4, 933-940.	5.9	54
85	Determinants of Syncytium Formation in Microglia by Human Immunodeficiency Virus Type 1: Role of the V1/V2 Domains. Journal of Virology, 2000, 74, 693-701.	1.5	49
86	Long HIV Type 1 Reverse Transcripts Can Accumulate Stably within Resting CD4+T Cells While Short Ones Are Degraded. AIDS Research and Human Retroviruses, 2004, 20, 285-295.	0.5	49
87	SnapShot: HIV-1 Proteins. Cell, 2008, 133, 742-742.e1.	13.5	49
88	The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses. Journal of General Virology, 2012, 93, 565-576.	1.3	49
89	HIV-1 Replication and APOBEC3 Antiviral Activity Are Not Regulated by P Bodies. Journal of Virology, 2012, 86, 11712-11724.	1.5	47
90	Multiple components of the nuclear pore complex interact with the amino-terminus of MX2 to facilitate HIV-1 restriction. PLoS Pathogens, 2018, 14, e1007408.	2.1	43

#	Article	IF	CITATIONS
91	Nuclear import of SAMHD1 is mediated by a classical karyopherin $\hat{l} \pm \hat{l}^2 1$ dependent pathway and confers sensitivity to VpxMAC induced ubiquitination and proteasomal degradation. Retrovirology, 2014, 11, 29.	0.9	42
92	Oligomerization Requirements for MX2-Mediated Suppression of HIV-1 Infection. Journal of Virology, 2016, 90, 22-32.	1.5	41
93	Pan-cancer transcriptomic analysis dissects immune and proliferative functions of APOBEC3 cytidine deaminases. Nucleic Acids Research, 2019, 47, 1178-1194.	6.5	41
94	Single dose of BNT162b2 mRNA vaccine against SARS-CoV-2 induces high frequency of neutralising antibody and polyfunctional T-cell responses in patients with myeloproliferative neoplasms. Leukemia, 2021, 35, 3573-3577.	3.3	41
95	Complex Interplay between HIV-1 Capsid and MX2-Independent Alpha Interferon-Induced Antiviral Factors. Journal of Virology, 2016, 90, 7469-7480.	1.5	40
96	Matrix Mediates the Functional Link between Human Immunodeficiency Virus Type 1 RNA Nuclear Export Elements and the Assembly Competency of Gag in Murine Cells. Journal of Virology, 2009, 83, 8525-8535.	1.5	39
97	Natural resistance to HIV infection: The Vif–APOBEC interaction. Comptes Rendus - Biologies, 2006, 329, 871-875.	0.1	38
98	Virion Incorporation of Human Immunodeficiency Virus Type-1 Vif Is Determined by Intracellular Expression Level and May Not Be Necessary for Function. Virology, 1998, 248, 182-187.	1.1	37
99	Evolution of a Species-Specific Determinant within Human CRM1 that Regulates the Post-transcriptional Phases of HIV-1 Replication. PLoS Pathogens, 2011, 7, e1002395.	2.1	31
100	Humoral and cellular immunity to delayed second dose of SARS-CoV-2 BNT162b2 mRNA vaccination in patients with cancer. Cancer Cell, 2021, 39, 1445-1447.	7.7	29
101	Repeated vaccination against SARS-CoV-2 elicits robust polyfunctional TÂcell response in allogeneic stem cell transplantation recipients. Cancer Cell, 2021, 39, 1448-1449.	7.7	29
102	Broad Neutralization of SARS-CoV-2 Variants, Including Omicron, following Breakthrough Infection with Delta in COVID-19-Vaccinated Individuals. MBio, 2022, 13, e0379821.	1.8	28
103	The GTPase Domain of MX2 Interacts with the HIV-1 Capsid, Enabling Its Short Isoform to Moderate Antiviral Restriction. Cell Reports, 2019, 29, 1923-1933.e3.	2.9	27
104	Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. Analyst, The, 2020, 145, 5638-5646.	1.7	26
105	New insights into an X-traordinary viral protein. Frontiers in Microbiology, 2014, 5, 126.	1.5	25
106	Cooperativity among Rev-Associated Nuclear Export Signals Regulates HIV-1 Gene Expression and Is a Determinant of Virus Species Tropism. Journal of Virology, 2014, 88, 14207-14221.	1.5	23
107	Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation. PLoS ONE, 2021, 16, e0256813.	1.1	23
108	Combined epidemiological and genomic analysis of nosocomial SARS-CoV-2 infection early in the pandemic and the role of unidentified cases in transmission. Clinical Microbiology and Infection, 2022, 28, 93-100.	2.8	21

#	Article	IF	CITATIONS
109	Nuclear Export of Human Immunodeficiency Virus Type 1 Vpr Is Not Required for Virion Packaging. Journal of Virology, 2001, 75, 8348-8352.	1.5	20
110	Immune evasion activities of accessory proteins Vpu, Nef and Vif are conserved in acute and chronic HIV-1 infection. Virology, 2015, 482, 72-78.	1.1	18
111	Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection. Journal of Virology, 2017, 91, .	1.5	18
112	MX2-mediated innate immunity against HIV-1 is regulated by serine phosphorylation. Nature Microbiology, 2021, 6, 1031-1042.	5.9	18
113	ACE2 expression in adipose tissue is associated with cardio-metabolic risk factors and cell type composition—implications for COVID-19. International Journal of Obesity, 2022, 46, 1478-1486.	1.6	18
114	The productton of hybrid Ty: IFN virus-like particles in yeast. Nucleic Acids Research, 1987, 15, 7571-7580.	6.5	17
115	Rationalisation of the Differences between APOBEC3G Structures from Crystallography and NMR Studies by Molecular Dynamics Simulations. PLoS ONE, 2010, 5, e11515.	1.1	17
116	HIV Interplay with SAMHD1. Science, 2012, 335, 1313-1314.	6.0	17
117	TMPRSS2 promotes SARS-CoV-2 evasion from NCOA7-mediated restriction. PLoS Pathogens, 2021, 17, e1009820.	2.1	13
118	HIV-1 Vpr Induces Widespread Transcriptomic Changes in CD4 ⁺ T Cells Early Postinfection. MBio, 2021, 12, e0136921.	1.8	12
119	DNA Deamination Mediates Innate Immunity to Retroviral Infection. Cell, 2004, 116, 629.	13.5	11
120	ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Cell Reports, 2022, 39, 110757.	2.9	10
121	Insight into the HIV-1 Vif SOCS-box–ElonginBC interaction. Open Biology, 2013, 3, 130100.	1.5	8
122	Translational Research in the Time of COVID-19—Dissolving Boundaries. PLoS Pathogens, 2020, 16, e1008898.	2.1	7
123	Impaired humoral and T cell response to vaccination against SARS-CoV-2 in chronic myeloproliferative neoplasm patients treated with ruxolitinib. Blood Cancer Journal, 2022, 12, 73.	2.8	7
124	Drug repurposing based on a quantum-inspired method versus classical fingerprinting uncovers potential antivirals against SARS-CoV-2. PLoS Computational Biology, 2022, 18, e1010330.	1.5	7
125	Clinical utility of targeted SARS-CoV-2 serology testing to aid the diagnosis and management of suspected missed, late or post-COVID-19 infection syndromes: Results from a pilot service implemented during the first pandemic wave. PLoS ONE, 2021, 16, e0249791.	1.1	6
126	Lorenzo-Redondo et al. reply. Nature, 2017, 551, E10-E10.	13.7	5

8

#	Article	IF	CITATIONS
127	Kinetics of Early Innate Immune Activation during HIV-1 Infection of Humanized Mice. Journal of Virology, 2019, 93, .	1.5	5
128	Ringside views. Nature, 2014, 505, 167-168.	13.7	4
129	Homebrew: An economical and sensitive glassmilk-based nucleic-acid extraction method for SARS-CoV-2 diagnostics. Cell Reports Methods, 2022, 2, 100186.	1.4	4
130	A Plea for Justice for Jailed Medical Workers. Science, 2006, 314, 924-925.	6.0	3
131	How Representative Are Research Tissue Biobanks of the Local Populations? Experience of the Infectious Diseases Biobank at King's College, London, UK. Biopreservation and Biobanking, 2011, 9, 287-288.	0.5	3
132	Unsung Hero Robert C. Gallo. Science, 2009, 323, 206-207.	6.0	2
133	APOBEC restriction goes nuclear. Nature Microbiology, 2019, 4, 6-7.	5.9	2
134	Homebrew: Protocol for glassmilk-based nucleic-acid extraction for SARS-CoV-2 diagnostics. STAR Protocols, 2022, 3, 101300.	0.5	2
135	Minimal impact of ZAP on lentiviral vector production and transduction efficiency. Molecular Therapy - Methods and Clinical Development, 2021, 23, 147-157.	1.8	1
136	Low Frequency of T Cell and Antibody Responses to Vaccination Against Sars-Cov-2 in Patients Post Allogeneic Stem Cell Transplantation in Comparison with Chronic Myeloid Malignancy Patients. Blood, 2021, 138, 3920-3920.	0.6	1
137	Increasing best practice data sharing at PLOS Pathogens. PLoS Pathogens, 2021, 17, e1010021.	2.1	1
138	Determining 3'-Termini and Sequences of Nascent Single-Stranded Viral DNA Molecules during HIV-1 Reverse Transcription in Infected Cells. Journal of Visualized Experiments, 2019, , .	0.2	0
139	The GTPase Domain of MX2 Interacts with HIV-1 Capsid Enabling Its Short Isoform to Moderate Antiviral Restriction. SSRN Electronic Journal, 0, , .	0.4	0