Paul W Sternberg

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6079952/paul-w-sternberg-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20,615 81 326 132 h-index g-index citations papers 6.78 24,610 369 11.7 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
326	WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans <i>Genetics</i> , 2022 ,	4	4
325	Nematode ascarosides attenuate mammalian type 2 inflammatory responses <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	2
324	Possible stochastic sex determination in Bursaphelenchus nematodes <i>Nature Communications</i> , 2022 , 13, 2574	17.4	1
323	Transcriptional Response to a Dauer-Inducing Ascaroside Cocktail in Late L1 in. <i>MicroPublication Biology</i> , 2021 , 2021,	0.8	1
322	The Gene Ontology resource: enriching a GOld mine. <i>Nucleic Acids Research</i> , 2021 , 49, D325-D334	20.1	494
321	CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
320	Wormicloud: a new text summarization tool based on word clouds to explore the C. elegans literature. <i>Database: the Journal of Biological Databases and Curation</i> , 2021 , 2021,	5	3
319	Combinatorial Assembly of Modular Glucosides via Carboxylesterases Regulates Starvation Survival. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14676-14683	16.4	0
318	Predicting gene essentiality in by feature engineering and machine-learning. <i>Computational and Structural Biotechnology Journal</i> , 2020 , 18, 1093-1102	6.8	6
317	RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. <i>Molecular Cell</i> , 2020 , 79, 207-220.e8	17.6	13
316	Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase. <i>Database: the Journal of Biological Databases and Curation</i> , 2020 , 2020,	5	8
315	Release and targeting of polycystin-2-carrying ciliary extracellular vesicles. <i>Current Biology</i> , 2020 , 30, R755-R756	6.3	9
314	Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. <i>Advances in Parasitology</i> , 2020 , 108, 175-229	3.2	12
313	WormBase: a modern Model Organism Information Resource. <i>Nucleic Acids Research</i> , 2020 , 48, D762-D7	76 7.1	107
312	Telomere-to-Telomere Genome Assembly of Bursaphelenchus okinawaensis Strain SH1. <i>Microbiology Resource Announcements</i> , 2020 , 9,	1.3	2
311	Vennter - An interactive analysis tool for WormBase interaction data using Venn diagrams. <i>MicroPublication Biology</i> , 2020 , 2020,	0.8	2
310	PIEZO channel coordinates multiple reproductive tissues to govern ovulation. <i>ELife</i> , 2020 , 9,	8.9	6

309	Modular metabolite assembly in depends on carboxylesterases and formation of lysosome-related organelles. <i>ELife</i> , 2020 , 9,	8.9	6
308	AF4/FMR2 Family Homolog Regulates Heat-Shock-Induced Gene Expression. <i>Genetics</i> , 2020 , 215, 1039-	10/54	1
307	Automated generation of gene summaries at the Alliance of Genome Resources. <i>Database: the Journal of Biological Databases and Curation</i> , 2020 , 2020,	5	4
306	Signaling by AWC Olfactory Neurons Is Necessary for RResponse to Prenol, an Odor Associated with Nematode-Infected Insects. <i>Genetics</i> , 2020 , 216, 145-157	4	1
305	Autonomous adaptive data acquisition for scanning hyperspectral imaging. <i>Communications Biology</i> , 2020 , 3, 684	6.7	3
304	Alliance of Genome Resources Portal: unified model organism research platform. <i>Nucleic Acids Research</i> , 2020 , 48, D650-D658	20.1	71
303	Newly Identified Nematodes from Mono Lake Exhibit Extreme Arsenic Resistance. <i>Current Biology</i> , 2019 , 29, 3339-3344.e4	6.3	12
302	Comparative Epigenomics Reveals that RNA Polymerase II Pausing and Chromatin Domain Organization Control Nematode piRNA Biogenesis. <i>Developmental Cell</i> , 2019 , 48, 793-810.e6	10.2	16
301	Ablating the fixed lineage conjecture: Commentary on Kimble 1981. <i>Developmental Biology</i> , 2019 , 446, 1-16	3.1	О
300	Genetic markers enable the verification and manipulation of the dauer entry decision. <i>Developmental Biology</i> , 2019 , 454, 170-180	3.1	6
299	Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. <i>Human Molecular Genetics</i> , 2019 , 28, 2271-2281	5.6	13
298	Opening up a large can of worms. <i>Nature Genetics</i> , 2019 , 51, 10-11	36.3	
297	A Toolkit of Engineered Recombinational Balancers in C. elegans. <i>Trends in Genetics</i> , 2018 , 34, 253-255	8.5	1
296	Metabolomic "Dark Matter" Dependent on Peroxisomal EDxidation in Caenorhabditis elegans. Journal of the American Chemical Society, 2018 , 140, 2841-2852	16.4	37
295	Split cGAL, an intersectional strategy using a split intein for refined spatiotemporal transgene control in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3900-3905	11.5	13
294	Reconstructing a metazoan genetic pathway with transcriptome-wide epistasis measurements. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2930-E2939.	9 ^{11.5}	10
293	WormBase 2017: molting into a new stage. <i>Nucleic Acids Research</i> , 2018 , 46, D869-D874	20.1	138
292	Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in. <i>Genetics</i> , 2018 , 210, 15-24	4	4

291	Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. <i>Nature Communications</i> , 2018 , 9, 3216	17.4	44
290	An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Using CRISPR/Cas9. <i>G3: Genes, Genomes, Genetics</i> , 2018 , 8, 3607-3616	3.2	17
289	Micropublication: incentivizing community curation and placing unpublished data into the public domain. <i>Database: the Journal of Biological Databases and Curation</i> , 2018 , 2018,	5	8
288	Improved Synthesis for Modular Ascarosides Uncovers Biological Activity. <i>Organic Letters</i> , 2017 , 19, 283	37 <u>62</u> 84	0 ₂₁
287	Whipworm kinomes reflect a unique biology and adaptation to the host animal. <i>International Journal for Parasitology</i> , 2017 , 47, 857-866	4.3	9
286	Biosynthesis of Modular Ascarosides in C. elegans. <i>Angewandte Chemie</i> , 2017 , 129, 4807-4811	3.6	1
285	Biosynthesis of Modular Ascarosides in C. elegans. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4729-4733	16.4	25
284	cGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans. <i>Nature Methods</i> , 2017 , 14, 145-148	21.6	30
283	Genome-wide discovery of active regulatory elements and transcription factor footprints in using DNase-seq. <i>Genome Research</i> , 2017 , 27, 2108-2119	9.7	11
282	Automated Analysis of a Nematode Population-based Chemosensory Preference Assay. <i>Journal of Visualized Experiments</i> , 2017 ,	1.6	3
281	The Jellyfish Cassiopea Exhibits a Sleep-like State. <i>Current Biology</i> , 2017 , 27, 2984-2990.e3	6.3	105
2 80	The Female-Like State: Decoupling the Transcriptomic Effects of Aging and Sperm Status. <i>G3: Genes, Genomes, Genetics</i> , 2017 , 7, 2969-2977	3.2	10
279	Non-neuronal cell outgrowth in. Worm, 2017, 6, e1405212		1
278	FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10726-E10.	7 35 .5	26
277	Deguelin exerts potent nematocidal activity the mitochondrial respiratory chain. <i>FASEB Journal</i> , 2017 , 31, 4515-4532	0.9	14
276	Nematophagous fungus mimics olfactory cues of sex and food to lure its nematode prey. <i>ELife</i> , 2017 , 6,	8.9	46
275	C.Lelegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides. <i>Current Biology</i> , 2016 , 26, 2446-2455	6.3	56
274	Tissue enrichment analysis for C. elegans genomics. <i>BMC Bioinformatics</i> , 2016 , 17, 366	3.6	70

(2015-2016)

Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction. <i>Developmental Biology</i> , 2016 , 416, 123-135	3.1	10
Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. <i>Parasites and Vectors</i> , 2016 , 9, 64	4	11
Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E13	39 ¹ 2 ¹ -4 ⁷ 0	1 37
WormBase 2016: expanding to enable helminth genomic research. <i>Nucleic Acids Research</i> , 2016 , 44, D7	7 4 -&0	217
Phylogenomic and biogeographic reconstruction of the Trichinella complex. <i>Nature Communications</i> , 2016 , 7, 10513	17.4	81
Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals. <i>PLoS ONE</i> , 2016 , 11, e0149102	3.7	4
Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 4167-4174	3.2	20
Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention. <i>Scientific Reports</i> , 2016 , 6, 20316	4.9	17
Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 2847-56	3.2	5
CAP protein superfamily members in Toxocara canis. <i>Parasites and Vectors</i> , 2016 , 9, 360	4	5
CAP protein superfamily members in Toxocara canis. <i>Parasites and Vectors</i> , 2016 , 9, 360 Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current Opinion in Neurobiology</i> , 2016 , 38, 119-24	7.6	5
Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current</i>	7.6 6.6	
Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current Opinion in Neurobiology</i> , 2016 , 38, 119-24		10
Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current Opinion in Neurobiology</i> , 2016 , 38, 119-24 Mapping a multiplexed zoo of mRNA expression. <i>Development (Cambridge)</i> , 2016 , 143, 3632-3637 The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process	6.6	10 95
Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current Opinion in Neurobiology</i> , 2016 , 38, 119-24 Mapping a multiplexed zoo of mRNA expression. <i>Development (Cambridge)</i> , 2016 , 143, 3632-3637 The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth. <i>Molecular Biology of the Cell</i> , 2016 , Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. <i>Proceedings of the</i>	6.6 3·5	10 95 31
Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current Opinion in Neurobiology</i> , 2016 , 38, 119-24 Mapping a multiplexed zoo of mRNA expression. <i>Development (Cambridge)</i> , 2016 , 143, 3632-3637 The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth. <i>Molecular Biology of the Cell</i> , 2016 , Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1185-9 The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify	6.6 3.5	10 95 31 61 68
Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current Opinion in Neurobiology</i> , 2016 , 38, 119-24 Mapping a multiplexed zoo of mRNA expression. <i>Development (Cambridge)</i> , 2016 , 143, 3632-3637 The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth. <i>Molecular Biology of the Cell</i> , 2016 , Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1185-9 The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families. <i>Nature Genetics</i> , 2015 , 47, 416-22	6.6 3.5 11.5 36.3	1095316168
	Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. <i>Parasites and Vectors</i> , 2016 , 9, 64 Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E13 WormBase 2016: expanding to enable helminth genomic research. <i>Nucleic Acids Research</i> , 2016 , 44, D7 Phylogenomic and biogeographic reconstruction of the Trichinella complex. <i>Nature Communications</i> , 2016 , 7, 10513 Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals. <i>PLoS ONE</i> , 2016 , 11, e0149102 Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 4167-4174 Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention. <i>Scientific Reports</i> , 2016 , 6, 20316 Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique	Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. Parasites and Vectors, 2016, 9, 64 Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1392-40. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Research, 2016, 44, D774-89 Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nature Communications, 2016, 7, 10513 Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals. PLoS ONE, 2016, 11, e0149102 3-7 Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes. G3: Genes, Genomes, Genetics, 2016, 6, 4167-4174 Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention. Scientific Reports, 2016, 6, 20316 Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique

255	Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. <i>Biotechnology Advances</i> , 2015 , 33, 980-91	17.8	18
254	Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In[Vivo. <i>Chemistry and Biology</i> , 2015 , 22, 1108-21		45
253	Morphologically defined sub-stages of C. elegans vulval development in the fourth larval stage. BMC Developmental Biology, 2015 , 15, 26	3.1	46
252	Defining the Schistosoma haematobium kinome enables the prediction of essential kinases as anti-schistosome drug targets. <i>Scientific Reports</i> , 2015 , 5, 17759	4.9	32
251	The Haemonchus contortus kinomea resource for fundamental molecular investigations and drug discovery. <i>Parasites and Vectors</i> , 2015 , 8, 623	4	12
250	Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. <i>Genome Biology</i> , 2015 , 16, 200	18.3	53
249	Cell-specific proteomic analysis in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2705-10	11.5	68
248	Sex Attraction and Mating in Bursaphelenchus okinawaensis and B. xylophilus. <i>Journal of Nematology</i> , 2015 , 47, 176-83	1.1	6
247	Flatworms have lost the right open reading frame kinase 3 gene during evolution. <i>Scientific Reports</i> , 2015 , 5, 9417	4.9	6
246	Genome of the human hookworm Necator americanus. <i>Nature Genetics</i> , 2014 , 46, 261-269	36.3	139
245	Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. <i>International Journal for Parasitology</i> , 2014 , 44, 251-61	4.3	4
244	Probing the equatorial groove of the hookworm protein and vaccine candidate antigen, Na-ASP-2. <i>International Journal of Biochemistry and Cell Biology</i> , 2014 , 50, 146-55	5.6	16
243	Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. <i>Cell</i> , 2014 , 156, 249-60	56.2	62
242	A modified mole cricket lure and description of Scapteriscus borellii (Orthoptera: Gryllotalpidae) range expansion and calling song in California. <i>Environmental Entomology</i> , 2014 , 43, 146-56	2.1	10
241	Spatial and molecular cues for cell outgrowth during C. elegans uterine development. <i>Developmental Biology</i> , 2014 , 396, 121-35	3.1	13
240	Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during	. 11.5	33
	aging. Proceedings of the National Academy of Sciences of the United States of America, 2014 , 111, E3880)- 9 >	
239	Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. <i>Nature Communications</i> , 2014 , 5, 4894	17.4	101

237	Mitochondrial genomes of Trichinella species and genotypes has basis for diagnosis, and systematic and epidemiological explorations. <i>International Journal for Parasitology</i> , 2014 , 44, 1073-80	4.3	34
236	Comparative validation of the D. melanogaster modENCODE transcriptome annotation. <i>Genome Research</i> , 2014 , 24, 1209-23	9.7	95
235	Structural and functional characterization of the Eubulin acetyltransferase MEC-17. <i>Journal of Molecular Biology</i> , 2014 , 426, 2605-16	6.5	19
234	Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. <i>Frontiers in Microbiology</i> , 2014 , 5, 43	5.7	27
233	Bioinformatic exploration of RIO protein kinases of parasitic and free-living nematodes. <i>International Journal for Parasitology</i> , 2014 , 44, 827-36	4.3	10
232	The Opisthorchis viverrini genome provides insights into life in the bile duct. <i>Nature Communications</i> , 2014 , 5, 4378	17.4	113
231	Evidence of hermaphroditism and sex ratio distortion in the fungal feeding nematode Bursaphelenchus okinawaensis. <i>G3: Genes, Genomes, Genetics</i> , 2014 , 4, 1907-17	3.2	13
230	Transgene-free genome editing by germline injection of CRISPR/Cas RNA. <i>Methods in Enzymology</i> , 2014 , 546, 441-57	1.7	3
229	Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17905-10	11.5	25
228	BC4GO: a full-text corpus for the BioCreative IV GO task. <i>Database: the Journal of Biological Databases and Curation</i> , 2014 , 2014,	5	29
227	WormBase 2014: new views of curated biology. <i>Nucleic Acids Research</i> , 2014 , 42, D789-93	20.1	126
226	LINKIN, a new transmembrane protein necessary for cell adhesion. <i>ELife</i> , 2014 , 3, e04449	8.9	10
225	Nematode Communication 2014 , 383-407		
224	Decoding the Ascaris suum Genome using Massively Parallel Sequencing and Advanced Bioinformatic Methods Inprecedented Prospects for Fundamental and Applied Research 2013 , 287-31	4	
223	Getting the most out of parasitic helminth transcriptomes using HelmDB: implications for biology and biotechnology. <i>Biotechnology Advances</i> , 2013 , 31, 1109-19	17.8	22
222	Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomicsprospects for new interventions. <i>Biotechnology Advances</i> , 2013 , 31, 1486-500	17.8	16
221	Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. <i>Genetics</i> , 2013 , 195, 1167-	74	82
220	Nematode-trapping fungi eavesdrop on nematode pheromones. <i>Current Biology</i> , 2013 , 23, 83-6	6.3	101

219	FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans. <i>Development (Cambridge)</i> , 2013 , 140, 3882-91	6.6	13
218	Origin and evolution of dishevelled. <i>G3: Genes, Genomes, Genetics</i> , 2013 , 3, 251-62	3.2	13
217	The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. <i>Genome Biology</i> , 2013 , 14, R89	18.3	166
216	Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Ga signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11940-5	11.5	24
215	Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. <i>Journal of Biological Chemistry</i> , 2013 , 288, 18778-83	5.4	55
214	The draft genome and transcriptome of Panagrellus redivivus are shaped by the harsh demands of a free-living lifestyle. <i>Genetics</i> , 2013 , 193, 1279-95	4	41
213	Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. <i>Frontiers in Computational Neuroscience</i> , 2013 , 7, 128	3.5	30
212	Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans. <i>PLoS ONE</i> , 2013 , 8, e54971	3.7	7
211	A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. <i>PLoS ONE</i> , 2013 , 8, e69618	3.7	65
210	Entomopathogenic nematodes. <i>Current Biology</i> , 2012 , 22, R430-1	6.3	48
209	Nematode-bacterium symbiosescooperation and conflict revealed in the "omics" age. <i>Biological Bulletin</i> , 2012 , 223, 85-102	1.5	50
208	Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1817-24	16.4	146
207	Automatic categorization of diverse experimental information in the bioscience literature. <i>BMC Bioinformatics</i> , 2012 , 13, 16	3.6	23
206	The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. <i>PLoS ONE</i> , 2012 , 7, e34464	3.7	19
205	Ascaroside signaling is widely conserved among nematodes. <i>Current Biology</i> , 2012 , 22, 772-80	6.3	141
204	Transcription factor redundancy and tissue-specific regulation: evidence from functional and physical network connectivity. <i>Genome Research</i> , 2012 , 22, 1907-19	9.7	10
203	Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in Caenorhabditis elegans. <i>ACS Chemical Biology</i> , 2012 , 7, 1321-5	4.9	81

201	An entomopathogenic nematode by any other name. PLoS Pathogens, 2012, 8, e1002527	7.6	139
200	Text mining in the biocuration workflow: applications for literature curation at WormBase, dictyBase and TAIR. <i>Database: the Journal of Biological Databases and Curation</i> , 2012 , 2012, bas040	5	31
199	Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. <i>PLoS Biology</i> , 2012 , 10, e1001306	9.7	57
198	Olfaction shapes host-parasite interactions in parasitic nematodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E2324-33	11.5	104
197	Functional transcriptomics of a migrating cell in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 16246-51	11.5	29
196	Sex-specific mating pheromones in the nematode Panagrellus redivivus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20949-54	11.5	56
195	WormBase 2012: more genomes, more data, new website. <i>Nucleic Acids Research</i> , 2012 , 40, D735-41	20.1	159
194	A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. <i>PLoS Biology</i> , 2012 , 10, e1001237	9.7	163
193	Incorporating genomics into the toolkit of nematology. <i>Journal of Nematology</i> , 2012 , 44, 191-205	1.1	11
192	Microfluidic chamber arrays for whole-organism behavior-based chemical screening. <i>Lab on A Chip</i> , 2011 , 11, 3689-3697	7.2	83
191	Metazoan operons accelerate recovery from growth-arrested states. <i>Cell</i> , 2011 , 145, 981-92	56.2	35
190	Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage. <i>PLoS ONE</i> , 2011 , 6, e17804	3.7	68
189	A sensory code for host seeking in parasitic nematodes. <i>Current Biology</i> , 2011 , 21, 377-83	6.3	140
188	Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. <i>Biotechnology Advances</i> , 2011 , 29, 261-71	17.8	27
187	Atypical (RIO) protein kinases from Haemonchus contortuspromise as new targets for nematocidal drugs. <i>Biotechnology Advances</i> , 2011 , 29, 338-50	17.8	25
186	Ascaris suum draft genome. <i>Nature</i> , 2011 , 479, 529-33	50.4	217
185	Applications of high-throughput sequencing to symbiotic nematodes of the genus Heterorhabditis. <i>Symbiosis</i> , 2011 , 55, 111-118	3	8
184	Toward an interactive article: integrating journals and biological databases. <i>BMC Bioinformatics</i> , 2011 , 12, 175	3.6	9

183	Worm Phenotype Ontology: integrating phenotype data within and beyond the C. elegans community. <i>BMC Bioinformatics</i> , 2011 , 12, 32	3.6	54
182	The LIN-15A and LIN-56 transcriptional regulators interact to negatively regulate EGF/Ras signaling in Caenorhabditis elegans vulval cell-fate determination. <i>Genetics</i> , 2011 , 187, 803-15	4	9
181	Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 254	. -5 ^{1.5}	87
180	Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9667-72	11.5	44
179	Sensitive and precise quantification of insulin-like mRNA expression in Caenorhabditis elegans. <i>PLoS ONE</i> , 2011 , 6, e18086	3.7	35
178	Scaffolding a Caenorhabditis nematode genome with RNA-seq. <i>Genome Research</i> , 2010 , 20, 1740-7	9.7	78
177	A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. <i>Nucleic Acids Research</i> , 2010 , 38, e171	20.1	60
176	WormBase: a comprehensive resource for nematode research. <i>Nucleic Acids Research</i> , 2010 , 38, D463-7	20.1	289
175	Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. <i>Development (Cambridge)</i> , 2010 , 137, 2065-74	6.6	36
174	Massively parallel sequencing and analysis of the Necator americanus transcriptome. <i>PLoS Neglected Tropical Diseases</i> , 2010 , 4, e684	4.8	66
173	Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate. <i>Lab on A Chip</i> , 2010 , 10, 411-4	7.2	32
172	A vacuolar-type proton (H+) translocating ATPase alpha subunit encoded by the Hc-vha-6 gene of Haemonchus contortus. <i>Molecular and Cellular Probes</i> , 2010 , 24, 196-203	3.3	3
171	C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis. <i>Developmental Biology</i> , 2010 , 338, 226-36	3.1	10
170	Re-programming of C. elegans male epidermal precursor fates by Wnt, Hox, and LIN-12/Notch activities. <i>Developmental Biology</i> , 2010 , 345, 1-11	3.1	6
169	Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus. <i>BMC Genomics</i> , 2010 , 11, 266	4.5	44
168	A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. <i>BMC Neuroscience</i> , 2010 , 11, 22	3.2	26
167	Elucidating ANTs in worms using genomic and bioinformatic toolsbiotechnological prospects?. <i>Biotechnology Advances</i> , 2010 , 28, 49-60	17.8	11
166	Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). <i>International Journal for Parasitology</i> 2010 40, 405-15	4.3	45

(2008-2009)

165	RNA Pol II accumulates at promoters of growth genes during developmental arrest. <i>Science</i> , 2009 , 324, 92-4	33.3	134
164	A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7708-13	11.5	186
163	The NK-2 class homeodomain factor CEH-51 and the T-box factor TBX-35 have overlapping function in C. elegans mesoderm development. <i>Development (Cambridge)</i> , 2009 , 136, 2735-46	6.6	39
162	The roles of EGF and Wnt signaling during patterning of the C. elegans Bgamma/delta Equivalence Group. <i>BMC Developmental Biology</i> , 2009 , 9, 74	3.1	2
161	Predicting phenotypic diversity and the underlying quantitative molecular transitions. <i>PLoS Computational Biology</i> , 2009 , 5, e1000354	5	23
160	The C. elegans tailless/Tlx homolog nhr-67 regulates a stage-specific program of linker cell migration in male gonadogenesis. <i>Development (Cambridge)</i> , 2009 , 136, 3907-15	6.6	16
159	Semi-automated curation of protein subcellular localization: a text mining-based approach to Gene Ontology (GO) Cellular Component curation. <i>BMC Bioinformatics</i> , 2009 , 10, 228	3.6	47
158	Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. <i>BMC Genomics</i> , 2009 , 10, 205	4.5	17
157	Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora. <i>BMC Genomics</i> , 2009 , 10, 609	4.5	20
156	A portrait of the "SCP/TAPS" proteins of eukaryotesdeveloping a framework for fundamental research and biotechnological outcomes. <i>Biotechnology Advances</i> , 2009 , 27, 376-88	17.8	126
155	Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior. <i>BMC Biology</i> , 2009 , 7, 33	7.3	12
154	Wnt and EGF pathways act together to induce C. elegans male hook development. <i>Developmental Biology</i> , 2009 , 327, 419-32	3.1	14
153	Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. <i>Developmental Biology</i> , 2009 , 335, 12-21	3.1	17
152	Exploring transcriptional conservation between Ancylostoma caninum and Haemonchus contortus by oligonucleotide microarray and bioinformatic analyses. <i>Molecular and Cellular Probes</i> , 2009 , 23, 1-9	3.3	10
151	Bioinformatic analysis of abundant, gender-enriched transcripts of adult Ascaris suum (Nematoda) using a semi-automated workflow platform. <i>Molecular and Cellular Probes</i> , 2009 , 23, 205-17	3.3	16
150	Gender-enriched transcripts in Haemonchus contortuspredicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. <i>International Journal for Parasitology</i> , 2008 , 38, 65-83	4.3	36
149	Ror receptor tyrosine kinases: orphans no more. <i>Trends in Cell Biology</i> , 2008 , 18, 536-44	18.3	201
148	Tv-RIO1 - an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus. <i>Parasites and Vectors</i> , 2008 , 1, 34	4	7

147	Opposing Wnt pathways orient cell polarity during organogenesis. <i>Cell</i> , 2008 , 134, 646-56	56.2	141
146	A blend of small molecules regulates both mating and development in Caenorhabditis elegans. <i>Nature</i> , 2008 , 454, 1115-8	50.4	272
145	Acute carbon dioxide avoidance in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 8038-43	11.5	140
144	Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 106	7 0-5	226
143	The Caenorhabditis elegans vulva: a post-embryonic gene regulatory network controlling organogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 20095-9	11.5	29
142	Multigenome DNA sequence conservation identifies Hox cis-regulatory elements. <i>Genome Research</i> , 2008 , 18, 1955-68	9.7	20
141	Destiny is anatomy. Development (Cambridge), 2008, 135, 3977-3978	6.6	
140	Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum. <i>PLoS Neglected Tropical Diseases</i> , 2008 , 2, e246	4.8	26
139	Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. <i>Journal of Computational Neuroscience</i> , 2008 , 24, 253-76	1.4	70
138	The neuroscience information framework: a data and knowledge environment for neuroscience. <i>Neuroinformatics</i> , 2008 , 6, 149-60	3.2	148
137	Textpresso for neuroscience: searching the full text of thousands of neuroscience research papers. <i>Neuroinformatics</i> , 2008 , 6, 195-204	3.2	40
136	Federated access to heterogeneous information resources in the Neuroscience Information Framework (NIF). <i>Neuroinformatics</i> , 2008 , 6, 205-17	3.2	54
135	Issues in the design of a pilot concept-based query interface for the neuroinformatics information framework. <i>Neuroinformatics</i> , 2008 , 6, 229-39	3.2	5
134	Evolution of a polymodal sensory response network. <i>BMC Biology</i> , 2008 , 6, 52	7.3	26
133	WormBase 2007. Nucleic Acids Research, 2008, 36, D612-7	20.1	91
132	Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. <i>BMC Developmental Biology</i> , 2007 , 7, 101	3.1	41
131	Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. <i>Nature Neuroscience</i> , 2007 , 10, 1300-7	25.5	160
130	The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. <i>Nature Reviews Genetics</i> , 2007 , 8, 518-32	30.1	102

(2006-2007)

129	Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. <i>Current Biology</i> , 2007 , 17, 898-904	6.3	99
128	Automated data integration for developmental biological research. <i>Development (Cambridge)</i> , 2007 , 134, 3227-38	6.6	6
127	An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development. <i>Molecular and Cellular Biology</i> , 2007 , 27, 3695-707	4.8	8
126	The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva. <i>PLoS Genetics</i> , 2007 , 3, e69	6	26
125	WormBase: new content and better access. <i>Nucleic Acids Research</i> , 2007 , 35, D506-10	20.1	76
124	WormBook: the online review of Caenorhabditis elegans biology. <i>Nucleic Acids Research</i> , 2007 , 35, D477	2 -5 0.1	112
123	Expressed sequence tag analysis of gene representation in insect parasitic nematode Heterorhabditis bacteriophora. <i>Journal of Parasitology</i> , 2007 , 93, 1343-9	0.9	15
122	C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion. <i>Development (Cambridge)</i> , 2007 , 134, 669-79	6.6	38
121	Genetic analysis of dauer formation in Caenorhabditis briggsae. <i>Genetics</i> , 2007 , 177, 809-18	4	21
120	Evolutionary conservation of cell migration genes: from nematode neurons to vertebrate neural crest. <i>Genes and Development</i> , 2007 , 21, 391-6	12.6	30
119	The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway. <i>Development (Cambridge)</i> , 2007 , 134, 4053-62	6.6	67
118	DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. <i>Current Biology</i> , 2006 , 16, 780-5	6.3	169
117	Automatic document classification of biological literature. <i>BMC Bioinformatics</i> , 2006 , 7, 370	3.6	30
116	WormBase: better software, richer content. <i>Nucleic Acids Research</i> , 2006 , 34, D475-8	20.1	68
115	sli-3 negatively regulates the LET-23/epidermal growth factor receptor-mediated vulval induction pathway in Caenorhabditis elegans. <i>Genetics</i> , 2006 , 174, 1315-26	4	3
114	Intercellular coupling amplifies fate segregation during Caenorhabditis elegans vulval development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 1331-6	11.5	46
113	Genome-wide prediction of C. elegans genetic interactions. <i>Science</i> , 2006 , 311, 1481-4	33.3	229
112	Optofluidic microscopya method for implementing a high resolution optical microscope on a chip. <i>Lab on A Chip</i> , 2006 , 6, 1274-6	7.2	190

111	A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. <i>Cell</i> , 2006 , 127, 621-33	56.2	122
110	SynMuv genes redundantly inhibit lin-3/EGF expression to prevent inappropriate vulval induction in C. elegans. <i>Developmental Cell</i> , 2006 , 10, 667-72	10.2	85
109	Visualization of C. elegans transgenic arrays by GFP. BMC Genetics, 2006, 7, 36	2.6	29
108	Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord. <i>BMC Biology</i> , 2006 , 4, 26	7.3	29
107	A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. <i>Nature</i> , 2006 , 440, 684-7	50.4	243
106	Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. Journal of Theoretical Biology, 2006 , 242, 652-69	2.3	70
105	Pathway to RAS. <i>Genetics</i> , 2006 , 172, 727-31	4	6
104	Genetic dissection of developmental pathways. WormBook, 2006, 1-19		26
103	Pathway to RAS. <i>Genetics</i> , 2006 , 172, 727-731	4	6
102	FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. <i>Cell</i> , 2005 , 121, 951-62	56.2	148
101	An automated system for measuring parameters of nematode sinusoidal movement. <i>BMC Genetics</i> , 2005 , 6, 5	2.6	127
100	Transcriptional network underlying Caenorhabditis elegans vulval development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 4972-7	11.5	50
99	Vulval development. WormBook, 2005 , 1-28		234
98	The tailless Ortholog nhr-67 Regulates Patterning of Gene Expression and Morphogenesis in the C. elegans Vulva. <i>PLoS Genetics</i> , 2005 , preprint, e69	6	
97	The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. <i>Genes and Development</i> , 2004 , 18, 2380-91	12.6	58
96	The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans. <i>Genetics</i> , 2004 , 168, 1937-49	4	93
95	Developmental biology. A pattern of precision. <i>Science</i> , 2004 , 303, 637-8	33.3	14
94	A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. <i>Development (Cambridge)</i> , 2004 , 131, 143-51	6.6	73

93	Genome annotation by high-throughput 5RRNA end determination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1650-5	11.5	20
92	Textpresso: an ontology-based information retrieval and extraction system for biological literature. <i>PLoS Biology</i> , 2004 , 2, e309	9.7	403
91	WormBase: a multi-species resource for nematode biology and genomics. <i>Nucleic Acids Research</i> , 2004 , 32, D411-7	20.1	543
90	C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. <i>Cell</i> , 2004 , 118, 795-806	56.2	160
89	Searching WormBase for Information About Caenorhabditis elegans. <i>Current Protocols in Bioinformatics</i> , 2004 , 6, 1.8.1	24.2	1
88	Control of Caenorhabditis Elegans Behaviour and Development by G Proteins Big and Small 2004 , 195	-242	
87	The epidermal growth factor system in Caenorhabditis elegans 2003, 157-166		O
86	Building a cell and anatomy ontology of Caenorhabditis elegans. <i>Comparative and Functional Genomics</i> , 2003 , 4, 121-6		28
85	Extracellular domain determinants of LET-23 (EGF) receptor tyrosine kinase activity in Caenorhabditis elegans. <i>Oncogene</i> , 2003 , 22, 5471-80	9.2	8
84	A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. <i>Cell</i> , 2003 , 114, 285-97	56.2	117
83	cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. <i>Developmental Biology</i> , 2003 , 257, 85-103	3.1	41
82	The epidermal growth factor system in Caenorhabditis elegans. <i>Experimental Cell Research</i> , 2003 , 284, 150-9	4.2	78
81	Anchor cell invasion into the vulval epithelium in C. elegans. Developmental Cell, 2003, 5, 21-31	10.2	106
80	Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. <i>Development (Cambridge)</i> , 2003 , 130, 5217-27	6.6	35
79	A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans. <i>Development (Cambridge)</i> , 2003 , 130, 57-69	6.6	48
78	The C. elegans LIM homeobox gene lin-11 specifies multiple cell fates during vulval development. <i>Development (Cambridge)</i> , 2003 , 130, 2589-601	6.6	30
77	Modulation of EGF receptor-mediated vulva development by the heterotrimeric G-protein Galphaq and excitable cells in C. elegans. <i>Development (Cambridge)</i> , 2003 , 130, 4553-66	6.6	24
76	EGF-Receptor Signaling in Caenorhabditis elegans Vulval Development 2003 , 805-808		

75	Caenorhabditis elegans Galphaq regulates egg-laying behavior via a PLCbeta-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle. <i>Genetics</i> , 2003 , 165, 1805-22	4	66
74	Gene expression markers for Caenorhabditis elegans vulval cells. <i>Gene Expression Patterns</i> , 2002 , 2, 235	- 4 .5	23
73	Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 1598-603	11.5	91
72	Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. <i>Molecular Biology of the Cell</i> , 2002 , 13, 1641-51	3.5	69
71	Tissue-specific regulation of the LIM homeobox gene lin-11 during development of the Caenorhabditis elegans egg-laying system. <i>Developmental Biology</i> , 2002 , 247, 102-15	3.1	38
70	Caenorhabditis elegans cog-1 locus encodes GTX/Nkx6.1 homeodomain proteins and regulates multiple aspects of reproductive system development. <i>Developmental Biology</i> , 2002 , 252, 202-13	3.1	36
69	Gene expression markers for Caenorhabditis elegans vulval cells. <i>Mechanisms of Development</i> , 2002 , 119 Suppl 1, S203-9	1.7	52
68	Pattern formation during C. elegans vulval induction. <i>Current Topics in Developmental Biology</i> , 2001 , 51, 189-220	5.3	57
67	Regulation of distinct muscle behaviors controls the C. elegans maleß copulatory spicules during mating. <i>Cell</i> , 2001 , 107, 777-88	56.2	84
66	Control of vulval cell division number in the nematode Oscheius/Dolichorhabditis sp. CEW1. <i>Genetics</i> , 2001 , 157, 183-97	4	30
65	Goalpha regulates volatile anesthetic action in Caenorhabditis elegans. <i>Genetics</i> , 2001 , 158, 643-55	4	28
64	The Caenorhabditis elegans heterochronic gene lin-29 coordinates the vulval-uterine-epidermal connections. <i>Current Biology</i> , 2000 , 10, 1479-88	6.3	46
63	Distinct and redundant functions of mu1 medium chains of the AP-1 clathrin-associated protein complex in the nematode Caenorhabditis elegans. <i>Molecular Biology of the Cell</i> , 2000 , 11, 2743-56	3.5	58
62	Requirements of multiple domains of SLI-1, a Caenorhabditis elegans homologue of c-Cbl, and an inhibitory tyrosine in LET-23 in regulating vulval differentiation. <i>Molecular Biology of the Cell</i> , 2000 , 11, 4019-31	3.5	37
61	Evolution of vulva development in the Cephalobina (Nematoda). Developmental Biology, 2000, 221, 68-	8 6 .1	79
60	ARK-1 Inhibits EGFR Signaling in C. elegans. <i>Molecular Cell</i> , 2000 , 6, 65-75	17.6	92
59	Regulation of EGF receptor signaling in the fruitfly D. melanogaster and the nematode C. elegans. <i>Breast Disease</i> , 2000 , 11, 19-30	1.6	3
58	A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. <i>Nature</i> , 1999 , 401, 386-9	50.4	403

[1996-1999]

57	C. elegans vulval development as a model system to study the cancer biology of EGFR signaling. <i>Cancer and Metastasis Reviews</i> , 1999 , 18, 203-13	9.6	29
56	Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia. <i>Current Biology</i> , 1999 , 9, 237-46	6.3	65
55	Competence and commitment of Caenorhabditis elegans vulval precursor cells. <i>Developmental Biology</i> , 1999 , 212, 12-24	3.1	42
54	. <i>Nature</i> , 1999 , 401, 386-389	50.4	168
53	Characterization of seven genes affecting Caenorhabditis elegans hindgut development. <i>Genetics</i> , 1999 , 153, 731-42	4	34
52	Structural requirements for the tissue-specific and tissue-general functions of the Caenorhabditis elegans epidermal growth factor LIN-3. <i>Genetics</i> , 1999 , 153, 1257-69	4	20
51	Genetics of RAS signaling in C. elegans. <i>Trends in Genetics</i> , 1998 , 14, 466-72	8.5	188
50	A gonad-derived survival signal for vulval precursor cells in two nematode species. <i>Current Biology</i> , 1998 , 8, 287-90	6.3	25
49	Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. <i>Cell</i> , 1998 , 92, 523-33	56.2	171
48	Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. <i>Developmental Biology</i> , 1997 , 182, 150-61	3.1	87
47	Evolution of cell lineage. Current Opinion in Genetics and Development, 1997, 7, 543-50	4.9	34
46	Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. <i>Genetics</i> , 1997 , 145, 715-27	4	110
45	Intercellular signalling inCaenorhabditis elegansvulval pattern formation. <i>Seminars in Cell and Developmental Biology</i> , 1996 , 7, 175-183	7.5	1
44	Evolution of nematode vulval fate patterning. <i>Developmental Biology</i> , 1996 , 173, 396-407	3.1	50
43	Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. <i>Neuron</i> , 1996 , 16, 999-1009	13.9	152
42	Coordinated morphogenesis of epithelia during development of the Caenorhabditis elegans uterine-vulval connection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 9329-33	11.5	51
41	Apoptosis and change of competence limit the size of the vulva equivalence group in Pristionchus pacificus: a genetic analysis. <i>Current Biology</i> , 1996 , 6, 52-9	6.3	87
40	Sinistral nematode population. <i>Nature</i> , 1996 , 381, 122-122	50.4	14

39	Sensory regulation of male mating behavior in Caenorhabditis elegans. <i>Neuron</i> , 1995 , 14, 79-89	13.9	251
38	Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. <i>Cell</i> , 1995 , 82, 297-307	56.2	168
37	Evolution of cell lineage and pattern formation in the vulval equivalence group of rhabditid nematodes. <i>Developmental Biology</i> , 1995 , 167, 61-74	3.1	42
36	Mutations in the Caenorhabditis elegans gene vab-3 reveal distinct roles in fate specification and unequal cytokinesis in an asymmetric cell division. <i>Developmental Biology</i> , 1995 , 170, 679-89	3.1	21
35	Ras pathways in Caenorhabditis elegans. <i>Current Opinion in Genetics and Development</i> , 1995 , 5, 38-43	4.9	61
34	Genetic dissection of developmental pathways. <i>Methods in Cell Biology</i> , 1995 , 48, 97-122	1.8	22
33	LET-23-mediated signal transduction during Caenorhabditis elegans development. <i>Molecular Reproduction and Development</i> , 1995 , 42, 523-8	2.6	26
32	LET-23 1995 , 134-136		
31	The identification of a Caenorhabditis elegans homolog of p34cdc2 kinase. <i>Molecular Genetics and Genomics</i> , 1994 , 245, 781-6		12
30	The evolution of cell lineage in nematodes. <i>Development (Cambridge)</i> , 1994 , 1994, 85-95	6.6	15
30	The evolution of cell lineage in nematodes. <i>Development (Cambridge)</i> , 1994 , 1994, 85-95 Intercellular signaling and signal transduction in C. elegans. <i>Annual Review of Genetics</i> , 1993 , 27, 497-52		15
		2114.5	
29	Intercellular signaling and signal transduction in C. elegans. <i>Annual Review of Genetics</i> , 1993 , 27, 497-52. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. <i>Nature</i> , 1993 ,	2114.5	44
29	Intercellular signaling and signal transduction in C. elegans. <i>Annual Review of Genetics</i> , 1993 , 27, 497-52. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. <i>Nature</i> , 1993 , 363, 133-40.	2114.5 50.4	239
29 28 27	Intercellular signaling and signal transduction in C. elegans. <i>Annual Review of Genetics</i> , 1993 , 27, 497-52. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. <i>Nature</i> , 1993 , 363, 133-40. Falling off the knife edge. <i>Current Biology</i> , 1993 , 3, 763-5	21 _{14.5} 50.4 6.3	239 26
29 28 27 26	Intercellular signaling and signal transduction in C. elegans. <i>Annual Review of Genetics</i> , 1993 , 27, 497-52. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. <i>Nature</i> , 1993 , 363, 133-40 Falling off the knife edge. <i>Current Biology</i> , 1993 , 3, 763-5 Cell fate patterning during C. elegans vulval development. <i>Development (Cambridge)</i> , 1993 , 119, 9-18	50.4 6.3	239 26
29 28 27 26 25	Intercellular signaling and signal transduction in C. elegans. <i>Annual Review of Genetics</i> , 1993 , 27, 497-52. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. <i>Nature</i> , 1993 , 363, 133-40 Falling off the knife edge. <i>Current Biology</i> , 1993 , 3, 763-5 Cell fate patterning during C. elegans vulval development. <i>Development (Cambridge)</i> , 1993 , 119, 9-18 Signal Transduction during Caenorhabditis elegans Vulval Determination 1993 , 391-447	50.4 6.3	239 26

21	The roles of SH2/SH3 domains in nematode development. <i>BioEssays</i> , 1992 , 14, 481-4	4.1	2
20	Specification of Neuronal Identity in Caenorhabditis elegans 1992 , 1-43		3
19	Control of cell lineage and cell fate during nematode development. <i>Current Topics in Developmental Biology</i> , 1991 , 25, 177-225	5.3	8
18	Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. <i>Nature</i> , 1991 , 351, 535-41	50.4	220
17	Genetic control of cell type and pattern formation in Caenorhabditis elegans. <i>Advances in Genetics</i> , 1990 , 27, 63-116	3.3	8
16	The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. <i>Nature</i> , 1990 , 348, 693-9	50.4	383
15	let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. <i>Cell</i> , 1990 , 63, 921-31	56.2	373
14	The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. <i>Cell</i> , 1989 , 58, 679-93	56.2	210
13	Lateral inhibition during vulval induction in Caenorhabditis elegans. <i>Nature</i> , 1988 , 335, 551-4	50.4	185
12	lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. <i>Developmental Biology</i> , 1988 , 130, 67-73	3.1	109
11	Control of cell fates within equivalence groups in C. elegans. <i>Trends in Neurosciences</i> , 1988 , 11, 259-64	13.3	25
10	A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. <i>Nature</i> , 1987 , 326, 259-67	50.4	290
9	Pattern formation during vulval development in C. elegans. <i>Cell</i> , 1986 , 44, 761-72	56.2	337
8	The lin-12 locus specifies cell fates in Caenorhabditis elegans. <i>Cell</i> , 1983 , 34, 435-44	56.2	476
7	Postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus: description and comparison with those of Caenorhabditis elegans. <i>Developmental Biology</i> , 1982 , 93, 181-205	3.1	84
6	Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by the modification of cell lineage. <i>Developmental Biology</i> , 1981 , 88, 147-66	3.1	86
5	Phenotype and gene ontology enrichment as guides for disease modeling in C. elegans		3
4	Reconstructing a metazoan genetic pathway with transcriptome-wide epistasis measurements		1

lysosome-related organelles

Evolutionary analysis implicates RNA polymerase II pausing and chromatin structure in nematode piRNA biogenesis

Modular metabolite assembly in C. elegans depends on carboxylesterases and formation of

Caenorhabditis elegans PIEZO Channel Coordinates Multiple Reproductive Tissues to Govern Ovulation