Paul W Sternberg

List of Publications by Citations

Source: https://exaly.com/author-pdf/6079952/paul-w-sternberg-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

326 papers

20,615 citations

81 h-index

132 g-index

369 ext. papers

24,610 ext. citations

11.7 avg, IF

6.78 L-index

#	Paper	IF	Citations
326	WormBase: a multi-species resource for nematode biology and genomics. <i>Nucleic Acids Research</i> , 2004 , 32, D411-7	20.1	543
325	The Gene Ontology resource: enriching a GOld mine. <i>Nucleic Acids Research</i> , 2021 , 49, D325-D334	20.1	494
324	The lin-12 locus specifies cell fates in Caenorhabditis elegans. <i>Cell</i> , 1983 , 34, 435-44	56.2	476
323	Textpresso: an ontology-based information retrieval and extraction system for biological literature. <i>PLoS Biology</i> , 2004 , 2, e309	9.7	403
322	A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. <i>Nature</i> , 1999 , 401, 386-9	50.4	403
321	The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. <i>Nature</i> , 1990 , 348, 693-9	50.4	383
320	let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. <i>Cell</i> , 1990 , 63, 921-31	56.2	373
319	Pattern formation during vulval development in C. elegans. <i>Cell</i> , 1986 , 44, 761-72	56.2	337
318	The gene lin-3 encodes an inductive signal for vulval development in C. elegans. <i>Nature</i> , 1992 , 358, 470	-6 50.4	327
317	A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. <i>Nature</i> , 1987 , 326, 259-67	50.4	290
316	WormBase: a comprehensive resource for nematode research. <i>Nucleic Acids Research</i> , 2010 , 38, D463-7	20.1	289
315	A blend of small molecules regulates both mating and development in Caenorhabditis elegans. <i>Nature</i> , 2008 , 454, 1115-8	50.4	272
314	Sensory regulation of male mating behavior in Caenorhabditis elegans. <i>Neuron</i> , 1995 , 14, 79-89	13.9	251
313	A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. <i>Nature</i> , 2006 , 440, 684-7	50.4	243
312	C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. <i>Nature</i> , 1993 , 363, 133-40	50.4	239
311	Vulval development. <i>WormBook</i> , 2005 , 1-28		234
310	Genome-wide prediction of C. elegans genetic interactions. <i>Science</i> , 2006 , 311, 1481-4	33.3	229

309	Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 106	5 70 -5	226
308	Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. <i>Nature</i> , 1991 , 351, 535-41	50.4	220
307	WormBase 2016: expanding to enable helminth genomic research. <i>Nucleic Acids Research</i> , 2016 , 44, D7	7 4 -&0	217
306	Ascaris suum draft genome. <i>Nature</i> , 2011 , 479, 529-33	50.4	217
305	The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. <i>Cell</i> , 1989 , 58, 679-93	56.2	210
304	Ror receptor tyrosine kinases: orphans no more. <i>Trends in Cell Biology</i> , 2008 , 18, 536-44	18.3	201
303	Optofluidic microscopya method for implementing a high resolution optical microscope on a chip. <i>Lab on A Chip</i> , 2006 , 6, 1274-6	7.2	190
302	Genetics of RAS signaling in C. elegans. <i>Trends in Genetics</i> , 1998 , 14, 466-72	8.5	188
301	A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7708-13	11.5	186
300	Lateral inhibition during vulval induction in Caenorhabditis elegans. <i>Nature</i> , 1988 , 335, 551-4	50.4	185
299	Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. <i>Cell</i> , 1998 , 92, 523-33	56.2	171
298	DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. <i>Current Biology</i> , 2006 , 16, 780-5	6.3	169
297	. <i>Nature</i> , 1999 , 401, 386-389	50.4	168
296	Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. <i>Cell</i> , 1995 , 82, 297-307	56.2	168
295	The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. <i>Genome Biology</i> , 2013 , 14, R89	18.3	166
294	A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. <i>PLoS Biology</i> , 2012 , 10, e1001237	9.7	163
293	Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. <i>Nature Neuroscience</i> , 2007 , 10, 1300-7	25.5	160
292	C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. <i>Cell</i> , 2004 , 118, 795-806	56.2	160

291	WormBase 2012: more genomes, more data, new website. <i>Nucleic Acids Research</i> , 2012 , 40, D735-41	20.1	159
290	Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. <i>Neuron</i> , 1996 , 16, 999-1009	13.9	152
289	The neuroscience information framework: a data and knowledge environment for neuroscience. <i>Neuroinformatics</i> , 2008 , 6, 149-60	3.2	148
288	FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. <i>Cell</i> , 2005 , 121, 951-62	56.2	148
287	Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1817-24	16.4	146
286	Ascaroside signaling is widely conserved among nematodes. <i>Current Biology</i> , 2012 , 22, 772-80	6.3	141
285	Opposing Wnt pathways orient cell polarity during organogenesis. <i>Cell</i> , 2008 , 134, 646-56	56.2	141
284	Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. <i>Nature Communications</i> , 2015 , 6, 7795	17.4	140
283	A sensory code for host seeking in parasitic nematodes. <i>Current Biology</i> , 2011 , 21, 377-83	6.3	140
282	Acute carbon dioxide avoidance in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 8038-43	11.5	140
281	Genome of the human hookworm Necator americanus. <i>Nature Genetics</i> , 2014 , 46, 261-269	36.3	139
2 80	An entomopathogenic nematode by any other name. <i>PLoS Pathogens</i> , 2012 , 8, e1002527	7.6	139
279	WormBase 2017: molting into a new stage. <i>Nucleic Acids Research</i> , 2018 , 46, D869-D874	20.1	138
278	RNA Pol II accumulates at promoters of growth genes during developmental arrest. <i>Science</i> , 2009 , 324, 92-4	33.3	134
277	An automated system for measuring parameters of nematode sinusoidal movement. <i>BMC Genetics</i> , 2005 , 6, 5	2.6	127
276	WormBase 2014: new views of curated biology. <i>Nucleic Acids Research</i> , 2014 , 42, D789-93	20.1	126
275	A portrait of the "SCP/TAPS" proteins of eukaryotesdeveloping a framework for fundamental research and biotechnological outcomes. <i>Biotechnology Advances</i> , 2009 , 27, 376-88	17.8	126
274	A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. <i>Cell</i> , 2006 , 127, 621-33	56.2	122

(2008-2003)

273	A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. <i>Cell</i> , 2003 , 114, 285-97	56.2	117
272	The Opisthorchis viverrini genome provides insights into life in the bile duct. <i>Nature Communications</i> , 2014 , 5, 4378	17.4	113
271	WormBook: the online review of Caenorhabditis elegans biology. <i>Nucleic Acids Research</i> , 2007 , 35, D472	2-2 50.1	112
270	Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. <i>Genetics</i> , 1997 , 145, 715-27	4	110
269	lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. <i>Developmental Biology</i> , 1988 , 130, 67-73	3.1	109
268	WormBase: a modern Model Organism Information Resource. <i>Nucleic Acids Research</i> , 2020 , 48, D762-D7	767 .1	107
267	Anchor cell invasion into the vulval epithelium in C. elegans. Developmental Cell, 2003, 5, 21-31	10.2	106
266	The Jellyfish Cassiopea Exhibits a Sleep-like State. <i>Current Biology</i> , 2017 , 27, 2984-2990.e3	6.3	105
265	Olfaction shapes host-parasite interactions in parasitic nematodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E2324-33	11.5	104
264	The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. <i>Nature Reviews Genetics</i> , 2007 , 8, 518-32	30.1	102
263	Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. <i>Nature Communications</i> , 2014 , 5, 4894	17.4	101
262	Nematode-trapping fungi eavesdrop on nematode pheromones. <i>Current Biology</i> , 2013 , 23, 83-6	6.3	101
261	Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. <i>Current Biology</i> , 2007 , 17, 898-904	6.3	99
2 60	Comparative validation of the D. melanogaster modENCODE transcriptome annotation. <i>Genome Research</i> , 2014 , 24, 1209-23	9.7	95
259	Mapping a multiplexed zoo of mRNA expression. <i>Development (Cambridge)</i> , 2016 , 143, 3632-3637	6.6	95
258	The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans. <i>Genetics</i> , 2004 , 168, 1937-49	4	93
257	ARK-1 Inhibits EGFR Signaling in C. elegans. <i>Molecular Cell</i> , 2000 , 6, 65-75	17.6	92
256	WormBase 2007. Nucleic Acids Research, 2008 , 36, D612-7	20.1	91

255	Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 1598-603	11.5	91
254	Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 254	5 ^{1.5}	87
253	Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. <i>Developmental Biology</i> , 1997 , 182, 150-61	3.1	87
252	Apoptosis and change of competence limit the size of the vulva equivalence group in Pristionchus pacificus: a genetic analysis. <i>Current Biology</i> , 1996 , 6, 52-9	6.3	87
251	Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by the modification of cell lineage. <i>Developmental Biology</i> , 1981 , 88, 147-66	3.1	86
250	SynMuv genes redundantly inhibit lin-3/EGF expression to prevent inappropriate vulval induction in C. elegans. <i>Developmental Cell</i> , 2006 , 10, 667-72	10.2	85
249	Regulation of distinct muscle behaviors controls the C. elegans maleß copulatory spicules during mating. <i>Cell</i> , 2001 , 107, 777-88	56.2	84
248	Postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus: description and comparison with those of Caenorhabditis elegans. <i>Developmental Biology</i> , 1982 , 93, 181-205	3.1	84
247	Microfluidic chamber arrays for whole-organism behavior-based chemical screening. <i>Lab on A Chip</i> , 2011 , 11, 3689-3697	7.2	83
246	Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. <i>Genetics</i> , 2013 , 195, 1167-	741	82
245	Phylogenomic and biogeographic reconstruction of the Trichinella complex. <i>Nature Communications</i> , 2016 , 7, 10513	17.4	81
244	Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in		
	Caenorhabditis elegans. <i>ACS Chemical Biology</i> , 2012 , 7, 1321-5	4.9	81
243			79
243	Caenorhabditis elegans. ACS Chemical Biology, 2012 , 7, 1321-5		
	Caenorhabditis elegans. <i>ACS Chemical Biology</i> , 2012 , 7, 1321-5 Evolution of vulva development in the Cephalobina (Nematoda). <i>Developmental Biology</i> , 2000 , 221, 68-	8 6 .1	79
242	Caenorhabditis elegans. ACS Chemical Biology, 2012, 7, 1321-5 Evolution of vulva development in the Cephalobina (Nematoda). Developmental Biology, 2000, 221, 68-Scaffolding a Caenorhabditis nematode genome with RNA-seq. Genome Research, 2010, 20, 1740-7 The epidermal growth factor system in Caenorhabditis elegans. Experimental Cell Research, 2003,	8 6 .1	79 78
242	Caenorhabditis elegans. ACS Chemical Biology, 2012, 7, 1321-5 Evolution of vulva development in the Cephalobina (Nematoda). Developmental Biology, 2000, 221, 68-Scaffolding a Caenorhabditis nematode genome with RNA-seq. Genome Research, 2010, 20, 1740-7 The epidermal growth factor system in Caenorhabditis elegans. Experimental Cell Research, 2003, 284, 150-9	9·7 4·2	79 78 78

(1995-2004)

237	A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. <i>Development (Cambridge)</i> , 2004 , 131, 143-51	6.6	73
236	Alliance of Genome Resources Portal: unified model organism research platform. <i>Nucleic Acids Research</i> , 2020 , 48, D650-D658	20.1	71
235	Tissue enrichment analysis for C. elegans genomics. <i>BMC Bioinformatics</i> , 2016 , 17, 366	3.6	70
234	Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. <i>Journal of Computational Neuroscience</i> , 2008 , 24, 253-76	1.4	70
233	Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. <i>Journal of Theoretical Biology</i> , 2006 , 242, 652-69	2.3	70
232	Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. <i>Molecular Biology of the Cell</i> , 2002 , 13, 1641-51	3.5	69
231	The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families. <i>Nature Genetics</i> , 2015 , 47, 416-22	36.3	68
230	Cell-specific proteomic analysis in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2705-10	11.5	68
229	Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage. <i>PLoS ONE</i> , 2011 , 6, e17804	3.7	68
228	WormBase: better software, richer content. <i>Nucleic Acids Research</i> , 2006 , 34, D475-8	20.1	68
227	The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway. <i>Development (Cambridge)</i> , 2007 , 134, 4053-62	6.6	67
226	Massively parallel sequencing and analysis of the Necator americanus transcriptome. <i>PLoS Neglected Tropical Diseases</i> , 2010 , 4, e684	4.8	66
225	Caenorhabditis elegans Galphaq regulates egg-laying behavior via a PLCbeta-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle. <i>Genetics</i> , 2003 , 165, 1805-22	4	66
224	Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia. <i>Current Biology</i> , 1999 , 9, 237-46	6.3	65
223	A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. <i>PLoS ONE</i> , 2013 , 8, e69618	3.7	65
222	Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. <i>Cell</i> , 2014 , 156, 249-60	56.2	62
221	Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1185-9	11.5	61
220	Ras pathways in Caenorhabditis elegans. <i>Current Opinion in Genetics and Development</i> , 1995 , 5, 38-43	4.9	61

219	A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. <i>Nucleic Acids Research</i> , 2010 , 38, e171	20.1	60
218	The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. <i>Genes and Development</i> , 2004 , 18, 2380-91	12.6	58
217	Distinct and redundant functions of mu1 medium chains of the AP-1 clathrin-associated protein complex in the nematode Caenorhabditis elegans. <i>Molecular Biology of the Cell</i> , 2000 , 11, 2743-56	3.5	58
216	Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. <i>PLoS Biology</i> , 2012 , 10, e1001306	9.7	57
215	Pattern formation during C. elegans vulval induction. <i>Current Topics in Developmental Biology</i> , 2001 , 51, 189-220	5.3	57
214	C. Lelegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides. <i>Current Biology</i> , 2016 , 26, 2446-2455	6.3	56
213	Sex-specific mating pheromones in the nematode Panagrellus redivivus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20949-54	11.5	56
212	Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. <i>Journal of Biological Chemistry</i> , 2013 , 288, 18778-83	5.4	55
211	Worm Phenotype Ontology: integrating phenotype data within and beyond the C. elegans community. <i>BMC Bioinformatics</i> , 2011 , 12, 32	3.6	54
210	Federated access to heterogeneous information resources in the Neuroscience Information Framework (NIF). <i>Neuroinformatics</i> , 2008 , 6, 205-17	3.2	54
209	Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. <i>Genome Biology</i> , 2015 , 16, 200	18.3	53
208	Gene expression markers for Caenorhabditis elegans vulval cells. <i>Mechanisms of Development</i> , 2002 , 119 Suppl 1, S203-9	1.7	52
207	Coordinated morphogenesis of epithelia during development of the Caenorhabditis elegans uterine-vulval connection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 9329-33	11.5	51
206	Nematode-bacterium symbiosescooperation and conflict revealed in the "omics" age. <i>Biological Bulletin</i> , 2012 , 223, 85-102	1.5	50
205	Transcriptional network underlying Caenorhabditis elegans vulval development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 4972-7	11.5	50
204	Evolution of nematode vulval fate patterning. <i>Developmental Biology</i> , 1996 , 173, 396-407	3.1	50
203	Entomopathogenic nematodes. <i>Current Biology</i> , 2012 , 22, R430-1	6.3	48
202	A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans. <i>Development (Cambridge)</i> , 2003 , 130, 57-69	6.6	48

(2009-2009)

201	Semi-automated curation of protein subcellular localization: a text mining-based approach to Gene Ontology (GO) Cellular Component curation. <i>BMC Bioinformatics</i> , 2009 , 10, 228	3.6	47	
200	Morphologically defined sub-stages of C. elegans vulval development in the fourth larval stage. BMC Developmental Biology, 2015 , 15, 26	3.1	46	
199	Intercellular coupling amplifies fate segregation during Caenorhabditis elegans vulval development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 1331-6	11.5	46	
198	The Caenorhabditis elegans heterochronic gene lin-29 coordinates the vulval-uterine-epidermal connections. <i>Current Biology</i> , 2000 , 10, 1479-88	6.3	46	
197	Nematophagous fungus mimics olfactory cues of sex and food to lure its nematode prey. <i>ELife</i> , 2017 , 6,	8.9	46	
196	Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In[Vivo. <i>Chemistry and Biology</i> , 2015 , 22, 1108-21		45	
195	Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). <i>International Journal for Parasitology</i> , 2010 , 40, 405-15	4.3	45	
194	Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. <i>Nature Communications</i> , 2018 , 9, 3216	17.4	44	
193	Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9667-72	11.5	44	
192	Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus. <i>BMC Genomics</i> , 2010 , 11, 266	4.5	44	
191	Intercellular signaling and signal transduction in C. elegans. <i>Annual Review of Genetics</i> , 1993 , 27, 497-52	114.5	44	
190	Competence and commitment of Caenorhabditis elegans vulval precursor cells. <i>Developmental Biology</i> , 1999 , 212, 12-24	3.1	42	
189	Evolution of cell lineage and pattern formation in the vulval equivalence group of rhabditid nematodes. <i>Developmental Biology</i> , 1995 , 167, 61-74	3.1	42	
188	The draft genome and transcriptome of Panagrellus redivivus are shaped by the harsh demands of a free-living lifestyle. <i>Genetics</i> , 2013 , 193, 1279-95	4	41	
187	Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. <i>BMC Developmental Biology</i> , 2007 , 7, 101	3.1	41	
186	cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. <i>Developmental Biology</i> , 2003 , 257, 85-103	3.1	41	
185	Textpresso for neuroscience: searching the full text of thousands of neuroscience research papers. <i>Neuroinformatics</i> , 2008 , 6, 195-204	3.2	40	
				J

183	C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion. <i>Development (Cambridge)</i> , 2007 , 134, 669-79	6.6	38
182	Tissue-specific regulation of the LIM homeobox gene lin-11 during development of the Caenorhabditis elegans egg-laying system. <i>Developmental Biology</i> , 2002 , 247, 102-15	3.1	38
181	Metabolomic "Dark Matter" Dependent on Peroxisomal Exidation in Caenorhabditis elegans. Journal of the American Chemical Society, 2018 , 140, 2841-2852	16.4	37
180	Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E1	392-40	1 ³⁷
179	Requirements of multiple domains of SLI-1, a Caenorhabditis elegans homologue of c-Cbl, and an inhibitory tyrosine in LET-23 in regulating vulval differentiation. <i>Molecular Biology of the Cell</i> , 2000 , 11, 4019-31	3.5	37
178	Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. <i>Development (Cambridge)</i> , 2010 , 137, 2065-74	6.6	36
177	Gender-enriched transcripts in Haemonchus contortuspredicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. <i>International Journal for Parasitology</i> , 2008 , 38, 65-83	4.3	36
176	Caenorhabditis elegans cog-1 locus encodes GTX/Nkx6.1 homeodomain proteins and regulates multiple aspects of reproductive system development. <i>Developmental Biology</i> , 2002 , 252, 202-13	3.1	36
175	Metazoan operons accelerate recovery from growth-arrested states. <i>Cell</i> , 2011 , 145, 981-92	56.2	35
174	Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. <i>Development (Cambridge)</i> , 2003 , 130, 5217-27	6.6	35
173	Sensitive and precise quantification of insulin-like mRNA expression in Caenorhabditis elegans. <i>PLoS ONE</i> , 2011 , 6, e18086	3.7	35
172	Mitochondrial genomes of Trichinella species and genotypes has basis for diagnosis, and systematic and epidemiological explorations. <i>International Journal for Parasitology</i> , 2014 , 44, 1073-80	4.3	34
171	Evolution of cell lineage. Current Opinion in Genetics and Development, 1997, 7, 543-50	4.9	34
170	Characterization of seven genes affecting Caenorhabditis elegans hindgut development. <i>Genetics</i> , 1999 , 153, 731-42	4	34
169	Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E388	0- 9 1.5	33
168	Defining the Schistosoma haematobium kinome enables the prediction of essential kinases as anti-schistosome drug targets. <i>Scientific Reports</i> , 2015 , 5, 17759	4.9	32
167	Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate. <i>Lab on A Chip</i> , 2010 , 10, 411-4	7.2	32
166	Text mining in the biocuration workflow: applications for literature curation at WormBase, dictyBase and TAIR. <i>Database: the Journal of Biological Databases and Curation</i> , 2012 , 2012, bas040	5	31

(2017-2016)

165	The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth. <i>Molecular Biology of the Cell</i> , 2016 ,	3.5	31
164	cGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans. <i>Nature Methods</i> , 2017 , 14, 145-148	21.6	30
163	Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. <i>Frontiers in Computational Neuroscience</i> , 2013 , 7, 128	3.5	30
162	Automatic document classification of biological literature. <i>BMC Bioinformatics</i> , 2006 , 7, 370	3.6	30
161	Evolutionary conservation of cell migration genes: from nematode neurons to vertebrate neural crest. <i>Genes and Development</i> , 2007 , 21, 391-6	12.6	30
160	The C. elegans LIM homeobox gene lin-11 specifies multiple cell fates during vulval development. <i>Development (Cambridge)</i> , 2003 , 130, 2589-601	6.6	30
159	Control of vulval cell division number in the nematode Oscheius/Dolichorhabditis sp. CEW1. <i>Genetics</i> , 2001 , 157, 183-97	4	30
158	BC4GO: a full-text corpus for the BioCreative IV GO task. <i>Database: the Journal of Biological Databases and Curation</i> , 2014 , 2014,	5	29
157	Functional transcriptomics of a migrating cell in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 16246-51	11.5	29
156	The Caenorhabditis elegans vulva: a post-embryonic gene regulatory network controlling organogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 20095-9	11.5	29
155	Visualization of C. elegans transgenic arrays by GFP. BMC Genetics, 2006, 7, 36	2.6	29
154	Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord. <i>BMC Biology</i> , 2006 , 4, 26	7.3	29
153	C. elegans vulval development as a model system to study the cancer biology of EGFR signaling. <i>Cancer and Metastasis Reviews</i> , 1999 , 18, 203-13	9.6	29
152	Building a cell and anatomy ontology of Caenorhabditis elegans. <i>Comparative and Functional Genomics</i> , 2003 , 4, 121-6		28
151	Goalpha regulates volatile anesthetic action in Caenorhabditis elegans. <i>Genetics</i> , 2001 , 158, 643-55	4	28
150	Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. <i>Frontiers in Microbiology</i> , 2014 , 5, 43	5.7	27
149	Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. <i>Biotechnology Advances</i> , 2011 , 29, 261-71	17.8	27
148	FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10726-E107	7 35 .5	26

147	A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. <i>BMC Neuroscience</i> , 2010 , 11, 22	3.2	26
146	Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum. <i>PLoS Neglected Tropical Diseases</i> , 2008 , 2, e246	4.8	26
145	Evolution of a polymodal sensory response network. <i>BMC Biology</i> , 2008 , 6, 52	7.3	26
144	The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva. <i>PLoS Genetics</i> , 2007 , 3, e69	6	26
143	LET-23-mediated signal transduction during Caenorhabditis elegans development. <i>Molecular Reproduction and Development</i> , 1995 , 42, 523-8	2.6	26
142	Falling off the knife edge. Current Biology, 1993 , 3, 763-5	6.3	26
141	Genetic dissection of developmental pathways. WormBook, 2006, 1-19		26
140	Biosynthesis of Modular Ascarosides in C. elegans. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4729-4733	16.4	25
139	Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17905-10	11.5	25
138	Atypical (RIO) protein kinases from Haemonchus contortuspromise as new targets for nematocidal drugs. <i>Biotechnology Advances</i> , 2011 , 29, 338-50	17.8	25
137	A gonad-derived survival signal for vulval precursor cells in two nematode species. <i>Current Biology</i> , 1998 , 8, 287-90	6.3	25
136	Control of cell fates within equivalence groups in C. elegans. <i>Trends in Neurosciences</i> , 1988 , 11, 259-64	13.3	25
135	Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein G\(\mathbb{G}\) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013 , 110, 11940-5	11.5	24
134	Modulation of EGF receptor-mediated vulva development by the heterotrimeric G-protein Galphaq and excitable cells in C. elegans. <i>Development (Cambridge)</i> , 2003 , 130, 4553-66	6.6	24
133	Automatic categorization of diverse experimental information in the bioscience literature. <i>BMC Bioinformatics</i> , 2012 , 13, 16	3.6	23
132	Predicting phenotypic diversity and the underlying quantitative molecular transitions. <i>PLoS Computational Biology</i> , 2009 , 5, e1000354	5	23
131	Gene expression markers for Caenorhabditis elegans vulval cells. Gene Expression Patterns, 2002, 2, 235-	-4 .15	23
130	Getting the most out of parasitic helminth transcriptomes using HelmDB: implications for biology and biotechnology. <i>Biotechnology Advances</i> , 2013 , 31, 1109-19	17.8	22

129	Genetic dissection of developmental pathways. <i>Methods in Cell Biology</i> , 1995 , 48, 97-122	1.8	22
128	Improved Synthesis for Modular Ascarosides Uncovers Biological Activity. <i>Organic Letters</i> , 2017 , 19, 28	3 <i>7</i> 6284	021
127	Genetic analysis of dauer formation in Caenorhabditis briggsae. <i>Genetics</i> , 2007 , 177, 809-18	4	21
126	Mutations in the Caenorhabditis elegans gene vab-3 reveal distinct roles in fate specification and unequal cytokinesis in an asymmetric cell division. <i>Developmental Biology</i> , 1995 , 170, 679-89	3.1	21
125	Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora. <i>BMC Genomics</i> , 2009 , 10, 609	4.5	20
124	Multigenome DNA sequence conservation identifies Hox cis-regulatory elements. <i>Genome Research</i> , 2008 , 18, 1955-68	9.7	20
123	Genome annotation by high-throughput 5RRNA end determination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1650-5	11.5	20
122	Structural requirements for the tissue-specific and tissue-general functions of the Caenorhabditis elegans epidermal growth factor LIN-3. <i>Genetics</i> , 1999 , 153, 1257-69	4	20
121	Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 4167-4174	3.2	20
120	Structural and functional characterization of the Eubulin acetyltransferase MEC-17. <i>Journal of Molecular Biology</i> , 2014 , 426, 2605-16	6.5	19
119	The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. <i>PLoS ONE</i> , 2012 , 7, e34464	3.7	19
118	Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. <i>Biotechnology Advances</i> , 2015 , 33, 980-91	17.8	18
117	Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. <i>BMC Genomics</i> , 2009 , 10, 205	4.5	17
116	Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. <i>Developmental Biology</i> , 2009 , 335, 12-21	3.1	17
115	Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention. <i>Scientific Reports</i> , 2016 , 6, 20316	4.9	17
114	An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Using CRISPR/Cas9. <i>G3: Genes, Genomes, Genetics</i> , 2018 , 8, 3607-3616	3.2	17
113	Comparative Epigenomics Reveals that RNA Polymerase II Pausing and Chromatin Domain Organization Control Nematode piRNA Biogenesis. <i>Developmental Cell</i> , 2019 , 48, 793-810.e6	10.2	16
112	Probing the equatorial groove of the hookworm protein and vaccine candidate antigen, Na-ASP-2. <i>International Journal of Biochemistry and Cell Biology</i> , 2014 , 50, 146-55	5.6	16

111	Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomicsprospects for new interventions. <i>Biotechnology Advances</i> , 2013 , 31, 1486-500	17.8	16
110	The C. elegans tailless/Tlx homolog nhr-67 regulates a stage-specific program of linker cell migration in male gonadogenesis. <i>Development (Cambridge)</i> , 2009 , 136, 3907-15	6.6	16
109	Bioinformatic analysis of abundant, gender-enriched transcripts of adult Ascaris suum (Nematoda) using a semi-automated workflow platform. <i>Molecular and Cellular Probes</i> , 2009 , 23, 205-17	3.3	16
108	Expressed sequence tag analysis of gene representation in insect parasitic nematode Heterorhabditis bacteriophora. <i>Journal of Parasitology</i> , 2007 , 93, 1343-9	0.9	15
107	The evolution of cell lineage in nematodes. <i>Development (Cambridge)</i> , 1994 , 1994, 85-95	6.6	15
106	Deguelin exerts potent nematocidal activity the mitochondrial respiratory chain. <i>FASEB Journal</i> , 2017 , 31, 4515-4532	0.9	14
105	Wnt and EGF pathways act together to induce C. elegans male hook development. <i>Developmental Biology</i> , 2009 , 327, 419-32	3.1	14
104	Developmental biology. A pattern of precision. <i>Science</i> , 2004 , 303, 637-8	33.3	14
103	Sinistral nematode population. <i>Nature</i> , 1996 , 381, 122-122	50.4	14
102	Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. <i>Human Molecular Genetics</i> , 2019 , 28, 2271-2281	5.6	13
101	RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. <i>Molecular Cell</i> , 2020 , 79, 207-220.e8	17.6	13
100	Split cGAL, an intersectional strategy using a split intein for refined spatiotemporal transgene control in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3900-3905	11.5	13
99	Spatial and molecular cues for cell outgrowth during C. elegans uterine development. <i>Developmental Biology</i> , 2014 , 396, 121-35	3.1	13
98	Evidence of hermaphroditism and sex ratio distortion in the fungal feeding nematode Bursaphelenchus okinawaensis. <i>G3: Genes, Genomes, Genetics</i> , 2014 , 4, 1907-17	3.2	13
97	FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans. <i>Development (Cambridge)</i> , 2013 , 140, 3882-91	6.6	13
96	Origin and evolution of dishevelled. <i>G3: Genes, Genomes, Genetics</i> , 2013 , 3, 251-62	3.2	13
95	Newly Identified Nematodes from Mono Lake Exhibit Extreme Arsenic Resistance. <i>Current Biology</i> , 2019 , 29, 3339-3344.e4	6.3	12
94	The barber B pole worm CAP protein superfamilyA basis for fundamental discovery and biotechnology advances. <i>Biotechnology Advances</i> , 2015 , 33, 1744-54	17.8	12

(2014-2020)

93	Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. <i>Advances in Parasitology</i> , 2020 , 108, 175-229	3.2	12
92	The Haemonchus contortus kinomea resource for fundamental molecular investigations and drug discovery. <i>Parasites and Vectors</i> , 2015 , 8, 623	4	12
91	Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior. <i>BMC Biology</i> , 2009 , 7, 33	7-3	12
90	The identification of a Caenorhabditis elegans homolog of p34cdc2 kinase. <i>Molecular Genetics and Genomics</i> , 1994 , 245, 781-6		12
89	Genome-wide discovery of active regulatory elements and transcription factor footprints in using DNase-seq. <i>Genome Research</i> , 2017 , 27, 2108-2119	9.7	11
88	Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. <i>Parasites and Vectors</i> , 2016 , 9, 64	4	11
87	WormBase: Annotating many nematode genomes. Worm, 2012 , 1, 15-21		11
86	Elucidating ANTs in worms using genomic and bioinformatic toolsbiotechnological prospects?. <i>Biotechnology Advances</i> , 2010 , 28, 49-60	17.8	11
85	Incorporating genomics into the toolkit of nematology. Journal of Nematology, 2012, 44, 191-205	1.1	11
84	Reconstructing a metazoan genetic pathway with transcriptome-wide epistasis measurements. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E2930-E293	9 ^{11.5}	10
83	Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction. <i>Developmental Biology</i> , 2016 , 416, 123-135	3.1	10
82	A modified mole cricket lure and description of Scapteriscus borellii (Orthoptera: Gryllotalpidae) range expansion and calling song in California. <i>Environmental Entomology</i> , 2014 , 43, 146-56	2.1	10
81	The Female-Like State: Decoupling the Transcriptomic Effects of Aging and Sperm Status. <i>G3: Genes, Genomes, Genetics</i> , 2017 , 7, 2969-2977	3.2	10
80	Bioinformatic exploration of RIO protein kinases of parasitic and free-living nematodes. <i>International Journal for Parasitology</i> , 2014 , 44, 827-36	4.3	10
79	Transcription factor redundancy and tissue-specific regulation: evidence from functional and physical network connectivity. <i>Genome Research</i> , 2012 , 22, 1907-19	9.7	10
78	C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis. <i>Developmental Biology</i> , 2010 , 338, 226-36	3.1	10
77	Exploring transcriptional conservation between Ancylostoma caninum and Haemonchus contortus by oligonucleotide microarray and bioinformatic analyses. <i>Molecular and Cellular Probes</i> , 2009 , 23, 1-9	3.3	10
76	LINKIN, a new transmembrane protein necessary for cell adhesion. <i>ELife</i> , 2014 , 3, e04449	8.9	10

75	Mating pheromones of Nematoda: olfactory signaling with physiological consequences. <i>Current Opinion in Neurobiology</i> , 2016 , 38, 119-24	7.6	10
74	Whipworm kinomes reflect a unique biology and adaptation to the host animal. <i>International Journal for Parasitology</i> , 2017 , 47, 857-866	4.3	9
73	Release and targeting of polycystin-2-carrying ciliary extracellular vesicles. <i>Current Biology</i> , 2020 , 30, R755-R756	6.3	9
72	Toward an interactive article: integrating journals and biological databases. <i>BMC Bioinformatics</i> , 2011 , 12, 175	3.6	9
71	The LIN-15A and LIN-56 transcriptional regulators interact to negatively regulate EGF/Ras signaling in Caenorhabditis elegans vulval cell-fate determination. <i>Genetics</i> , 2011 , 187, 803-15	4	9
70	Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase. <i>Database: the Journal of Biological Databases and Curation</i> , 2020 , 2020,	5	8
69	Applications of high-throughput sequencing to symbiotic nematodes of the genus Heterorhabditis. <i>Symbiosis</i> , 2011 , 55, 111-118	3	8
68	An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development. <i>Molecular and Cellular Biology</i> , 2007 , 27, 3695-707	4.8	8
67	Extracellular domain determinants of LET-23 (EGF) receptor tyrosine kinase activity in Caenorhabditis elegans. <i>Oncogene</i> , 2003 , 22, 5471-80	9.2	8
66	Control of cell lineage and cell fate during nematode development. <i>Current Topics in Developmental Biology</i> , 1991 , 25, 177-225	5.3	8
65	Genetic control of cell type and pattern formation in Caenorhabditis elegans. <i>Advances in Genetics</i> , 1990 , 27, 63-116	3.3	8
64	Cell fate patterning during C. elegans vulval development. <i>Development (Cambridge)</i> , 1993 , 119, 9-18	6.6	8
63	Micropublication: incentivizing community curation and placing unpublished data into the public domain. <i>Database: the Journal of Biological Databases and Curation</i> , 2018 , 2018,	5	8
62	Tv-RIO1 - an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus. <i>Parasites and Vectors</i> , 2008 , 1, 34	4	7
61	Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans. <i>PLoS ONE</i> , 2013 , 8, e54971	3.7	7
60	Genetic markers enable the verification and manipulation of the dauer entry decision. Developmental Biology, 2019 , 454, 170-180	3.1	6
59	Predicting gene essentiality in by feature engineering and machine-learning. <i>Computational and Structural Biotechnology Journal</i> , 2020 , 18, 1093-1102	6.8	6
58	Re-programming of C. elegans male epidermal precursor fates by Wnt, Hox, and LIN-12/Notch activities. <i>Developmental Biology</i> , 2010 , 345, 1-11	3.1	6

(2010-2007)

57	Automated data integration for developmental biological research. <i>Development (Cambridge)</i> , 2007 , 134, 3227-38	6.6	6
56	Pathway to RAS. <i>Genetics</i> , 2006 , 172, 727-31	4	6
55	Sex Attraction and Mating in Bursaphelenchus okinawaensis and B. xylophilus. <i>Journal of Nematology</i> , 2015 , 47, 176-83	1.1	6
54	PIEZO channel coordinates multiple reproductive tissues to govern ovulation. <i>ELife</i> , 2020 , 9,	8.9	6
53	Modular metabolite assembly in depends on carboxylesterases and formation of lysosome-related organelles. <i>ELife</i> , 2020 , 9,	8.9	6
52	Flatworms have lost the right open reading frame kinase 3 gene during evolution. <i>Scientific Reports</i> , 2015 , 5, 9417	4.9	6
51	Pathway to RAS. <i>Genetics</i> , 2006 , 172, 727-731	4	6
50	Issues in the design of a pilot concept-based query interface for the neuroinformatics information framework. <i>Neuroinformatics</i> , 2008 , 6, 229-39	3.2	5
49	Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 2847-56	3.2	5
48	CAP protein superfamily members in Toxocara canis. <i>Parasites and Vectors</i> , 2016 , 9, 360	4	5
48 47	CAP protein superfamily members in Toxocara canis. <i>Parasites and Vectors</i> , 2016 , 9, 360 Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in. <i>Genetics</i> , 2018 , 210, 15-24	4	5
	Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in.		
47	Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in. <i>Genetics</i> , 2018 , 210, 15-24 Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. <i>International Journal for</i>	4	4
47	Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in. <i>Genetics</i> , 2018 , 210, 15-24 Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. <i>International Journal for Parasitology</i> , 2014 , 44, 251-61	4-3	4
47 46 45	Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in. <i>Genetics</i> , 2018 , 210, 15-24 Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. <i>International Journal for Parasitology</i> , 2014 , 44, 251-61 WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans <i>Genetics</i> , 2022 , Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the	4-3	4 4
47 46 45 44	Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in. <i>Genetics</i> , 2018 , 210, 15-24 Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. <i>International Journal for Parasitology</i> , 2014 , 44, 251-61 WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans <i>Genetics</i> , 2022 , Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals. <i>PLoS ONE</i> , 2016 , 11, e0149102 Automated generation of gene summaries at the Alliance of Genome Resources. <i>Database: the</i>	4 4.3 4 3.7	4 4
47 46 45 44 43	Using Transcriptomes as Mutant Phenotypes Reveals Functional Regions of a Mediator Subunit in. <i>Genetics</i> , 2018 , 210, 15-24 Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. <i>International Journal for Parasitology</i> , 2014 , 44, 251-61 WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans <i>Genetics</i> , 2022 , Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals. <i>PLoS ONE</i> , 2016 , 11, e0149102 Automated generation of gene summaries at the Alliance of Genome Resources. <i>Database: the Journal of Biological Databases and Curation</i> , 2020 , 2020, Automated Analysis of a Nematode Population-based Chemosensory Preference Assay. <i>Journal of</i>	4 4·3 4 3·7	4 4 4

39	sli-3 negatively regulates the LET-23/epidermal growth factor receptor-mediated vulval induction pathway in Caenorhabditis elegans. <i>Genetics</i> , 2006 , 174, 1315-26	4	3
38	Regulation of EGF receptor signaling in the fruitfly D. melanogaster and the nematode C. elegans. <i>Breast Disease</i> , 2000 , 11, 19-30	1.6	3
37	Specification of Neuronal Identity in Caenorhabditis elegans 1992 , 1-43		3
36	Phenotype and gene ontology enrichment as guides for disease modeling in C. elegans		3
35	Evolutionary analysis implicates RNA polymerase II pausing and chromatin structure in nematode piRNA biogenesis		3
34	Autonomous adaptive data acquisition for scanning hyperspectral imaging. <i>Communications Biology</i> , 2020 , 3, 684	6.7	3
33	Wormicloud: a new text summarization tool based on word clouds to explore the C. elegans literature. <i>Database: the Journal of Biological Databases and Curation</i> , 2021 , 2021,	5	3
32	The roles of EGF and Wnt signaling during patterning of the C. elegans Bgamma/delta Equivalence Group. <i>BMC Developmental Biology</i> , 2009 , 9, 74	3.1	2
31	Learning about cancer genes through invertebrate genetics. <i>Current Opinion in Genetics and Development</i> , 1992 , 2, 45-52	4.9	2
30	The roles of SH2/SH3 domains in nematode development. <i>BioEssays</i> , 1992 , 14, 481-4	4.1	2
29	Telomere-to-Telomere Genome Assembly of Bursaphelenchus okinawaensis Strain SH1. <i>Microbiology Resource Announcements</i> , 2020 , 9,	1.3	2
28	Vennter - An interactive analysis tool for WormBase interaction data using Venn diagrams. <i>MicroPublication Biology</i> , 2020 , 2020,	0.8	2
27	CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
26	Nematode ascarosides attenuate mammalian type 2 inflammatory responses <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	2
25	Biosynthesis of Modular Ascarosides in C. elegans. <i>Angewandte Chemie</i> , 2017 , 129, 4807-4811	3.6	1
24	A Toolkit of Engineered Recombinational Balancers in C. elegans. <i>Trends in Genetics</i> , 2018 , 34, 253-255	8.5	1
23	Non-neuronal cell outgrowth in. <i>Worm</i> , 2017 , 6, e1405212		1
22	Searching WormBase for Information About Caenorhabditis elegans. <i>Current Protocols in Bioinformatics</i> , 2004 , 6, 1.8.1	24.2	1

21	Intercellular signalling inCaenorhabditis elegansvulval pattern formation. <i>Seminars in Cell and Developmental Biology</i> , 1996 , 7, 175-183	7.5	1
20	Transcriptional Response to a Dauer-Inducing Ascaroside Cocktail in Late L1 in. <i>MicroPublication Biology</i> , 2021 , 2021,	0.8	1
19	Reconstructing a metazoan genetic pathway with transcriptome-wide epistasis measurements		1
18	Modular metabolite assembly in C. elegans depends on carboxylesterases and formation of lysosome-related organelles		1
17	Caenorhabditis elegans PIEZO Channel Coordinates Multiple Reproductive Tissues to Govern Ovulation	1	1
16	AF4/FMR2 Family Homolog Regulates Heat-Shock-Induced Gene Expression. <i>Genetics</i> , 2020 , 215, 1039-	1ұ54	1
15	Signaling by AWC Olfactory Neurons Is Necessary for RResponse to Prenol, an Odor Associated with Nematode-Infected Insects. <i>Genetics</i> , 2020 , 216, 145-157	4	1
14	Possible stochastic sex determination in Bursaphelenchus nematodes <i>Nature Communications</i> , 2022 , 13, 2574	17.4	1
13	Ablating the fixed lineage conjecture: Commentary on Kimble 1981. <i>Developmental Biology</i> , 2019 , 446, 1-16	3.1	О
12	The epidermal growth factor system in Caenorhabditis elegans 2003 , 157-166		О
11	Combinatorial Assembly of Modular Glucosides via Carboxylesterases Regulates Starvation Survival. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14676-14683	16.4	О
10	Decoding the Ascaris suum Genome using Massively Parallel Sequencing and Advanced Bioinformatic Methods [Unprecedented Prospects for Fundamental and Applied Research 2013 , 287-37	14	
9	Destiny is anatomy. Development (Cambridge), 2008, 135, 3977-3978	6.6	
8	Pattern Formation in Caenorhabditis Elegans. Advances in Developmental Biology (1992), 1992, 1, 107-1	61	
7	EGF-Receptor Signaling in Caenorhabditis elegans Vulval Development 2003, 805-808		
6	Control of Caenorhabditis Elegans Behaviour and Development by G Proteins Big and Small 2004 , 195-7	242	
5	The tailless Ortholog nhr-67 Regulates Patterning of Gene Expression and Morphogenesis in the C. elegans Vulva. <i>PLoS Genetics</i> , 2005 , preprint, e69	6	
4	Signal Transduction during Caenorhabditis elegans Vulval Determination 1993 , 391-447		

3 LET-23 **1995**, 134-136

Nematode Communication **2014**, 383-407

Opening up a large can of worms. *Nature Genetics*, **2019**, 51, 10-11

36.3