Cristina Ortega-Ferrusola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6079885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility. PLoS ONE, 2015, 10, e0138777.	2.5	103
2	Melatonin reduces lipid peroxidation and apoptotic-like changes in stallion spermatozoa. Journal of Pineal Research, 2011, 51, 172-179.	7.4	91
3	Autophagy and Apoptosis Have a Role in the Survival or Death of Stallion Spermatozoa during Conservation in Refrigeration. PLoS ONE, 2012, 7, e30688.	2.5	79
4	Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction, 2014, 148, 221-235.	2.6	69
5	Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants, 2019, 8, 567.	5.1	49
6	The Mitochondria of Stallion Spermatozoa Are More Sensitive Than the Plasmalemma to Osmoticâ€Induced Stress: Role of câ€Jun Nâ€terminal Kinase (JNK) Pathway. Journal of Andrology, 2012, 33, 105-113.	2.0	42
7	Pulse Doppler ultrasound as a tool for the diagnosis of chronic testicular dysfunction in stallions. PLoS ONE, 2017, 12, e0175878.	2.5	41
8	Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death1. Biology of Reproduction, 2015, 93, 143.	2.7	40
9	Caspase 3 Activity and Lipoperoxidative Status in Raw Semen Predict the Outcome of Cryopreservation of Stallion Spermatozoa. Biology of Reproduction, 2016, 95, 53-53.	2.7	32
10	Seasonal changes in the sperm fatty acid composition of Shetland pony stallions. Theriogenology, 2018, 107, 149-153.	2.1	29
11	Use of Colour and Spectral Doppler Ultrasonography in Stallion Andrology. Reproduction in Domestic Animals, 2014, 49, 88-96.	1.4	27
12	How does the microbial load affect the quality of equine cool-stored semen?. Theriogenology, 2018, 114, 212-220.	2.1	23
13	New flow cytometry approaches in equine andrology. Theriogenology, 2016, 86, 366-372.	2.1	22
14	Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse. PLoS ONE, 2019, 14, e0213420.	2.5	22
15	An integrated overview on the regulation of sperm metabolism (glycolysis-Krebs cycle-oxidative) Tj ETQq1 1 0.784	314 rgBT 1.5	/Qyerlock 1(
16	Depletion of thiols leads to redox deregulation, production of 4-hydroxinonenal and sperm senescence: a possible role for GSH regulation in spermatozoaâ€. Biology of Reproduction, 2019, 100, 1090-1107.	2.7	21
17	In Stallion Spermatozoa, Superoxide Dismutase (Cu–Zn) (SOD1) and the Aldo-Keto-Reductase Family 1 Member b (AKR1B1) Are the Proteins Most Significantly Reduced by Cryopreservation. Journal of Proteome Research, 2021, 20, 2435-2446.	3.7	19
18	Flow cytometry analysis of spermatozoa: Is it time for flow spermetry?. Reproduction in Domestic Animals, 2018, 53, 37-45.	1.4	17

#	Article	IF	CITATIONS
19	The incorporation of cystine by the soluble carrier family 7 member 11 (SLC7A11) is a component of the redox regulatory mechanism in stallion spermatozoaâ€. Biology of Reproduction, 2019, 101, 208-222.	2.7	17
20	Identification and Function of Exchange Proteins Activated Directly by Cyclic AMP (Epac) in Mammalian Spermatozoa. PLoS ONE, 2012, 7, e37713.	2.5	17
21	piRNA-associated proteins and retrotransposons are differentially expressed in murine testis and ovary of aryl hydrocarbon receptor deficient mice. Open Biology, 2016, 6, 160186.	3.6	16
22	Differences in the proteome of stallion spermatozoa explain stallion-to-stallion variability in sperm quality post-thawâ€. Biology of Reproduction, 2021, 104, 1097-1113.	2.7	16
23	Rosiglitazone in the thawing medium improves mitochondrial function in stallion spermatozoa through regulating Akt phosphorylation and reduction of caspase 3. PLoS ONE, 2019, 14, e0211994.	2.5	14
24	Seminal plasma AnnexinA2 protein is a relevant biomarker for stallions which require removal of seminal plasma for sperm survival upon refrigerationâ€. Biology of Reproduction, 2020, 103, 1275-1288.	2.7	14
25	The SLC7A11: sperm mitochondrial function and non-canonical glutamate metabolism. Reproduction, 2020, 160, 803-818.	2.6	14
26	How Stallion Sperm Age InÂVitro? Scenario for Preservation Technologies. Journal of Equine Veterinary Science, 2012, 32, 451-454.	0.9	13
27	Power Doppler can detect the presence of 7–8 day conceptuses prior to flushing in an equine embryo transfer program. Theriogenology, 2020, 145, 1-9.	2.1	10
28	Low glucose and high pyruvate reduce the production of 2-oxoaldehydes, improving mitochondrial efficiency, redox regulation, and stallion sperm functionâ€. Biology of Reproduction, 2021, 105, 519-532.	2.7	9
29	Comparing the Effect of Different Antibiotics in Frozen-Thawed Ram Sperm: Is It Possible to Avoid Their Addition?. Frontiers in Veterinary Science, 2021, 8, 656937.	2.2	9
30	Testicular perfusion after standing laparoscopic peritoneal flap hernioplasty in stallions. Theriogenology, 2015, 84, 797-804.	2.1	8
31	The seminal plasma proteins Peptidyl arginine deaminase 2, rRNA adenine N (6)-methyltransferase and KIAA0825 are linked to better motility post thaw in stallions. Theriogenology, 2022, 177, 94-102.	2.1	7
32	Seminal plasma proteins as potential biomarkers for sperm motility and velocities. Theriogenology, 2022, 177, 34-41.	2.1	6
33	The Stallion Spermatozoa: A Valuable Model to Help Understand the Interplay Between Metabolism and Redox (De)regulation in Sperm Cells. Antioxidants and Redox Signaling, 2022, 37, 521-537.	5.4	6
34	Proteins involved in mitochondrial metabolic functions and fertilization predominate in stallions with better motility. Journal of Proteomics, 2021, 247, 104335.	2.4	5
35	Effect of Different Extenders and Seminal Plasma on the Susceptibility of Equine Spermatozoa to Lipid Peroxidation After Single-Layer Centrifugation, Through Androcoll-E. Journal of Equine Veterinary Science, 2011, 31, 411-416.	0.9	4
36	Flow Cytometry Probes to Evaluate Stallion Spermatozoa. Journal of Equine Veterinary Science, 2016, 43, S23-S28.	0.9	3

#	Article	IF	CITATIONS
37	Data set of the proteome of fresh and frozen thawed stallion spermatozoa. Data in Brief, 2020, 31, 105887.	1.0	3
38	Evaluation of testicular echotexture with Ecotext as a diagnostic method of testicular dysfunction in stallions. Theriogenology, 2022, 185, 50-60.	2.1	3
39	Effect of BAPTA-AM on Thawed Stallion Spermatozoa Extended in INRA 96 or Tyrode's Medium. Journal of Equine Veterinary Science, 2013, 33, 622-627.	0.9	2
40	Tumor Necrosis Factor Î \pm Phosphorylates c-Jun N-Terminal Kinase in Stallion Spermatozoa: Effect of Cryopreservation. Journal of Equine Veterinary Science, 2015, 35, 206-212.	0.9	2
41	Progesterone stimulates the long-distance migration of capacitated ram spermatozoa through viscous media under geotactic condition. Theriogenology, 2018, 118, 7-15.	2.1	2
42	A Rare Case of a Primary Unilateral Low-Grade Paratesticular Leiomyosarcoma in a 2 Years Old Dog. Frontiers in Veterinary Science, 2019, 6, 83.	2.2	2
43	Endometrial area of the blood flow as a marker of endometritis in equine. Reproduction in Domestic Animals, 2022, 57, 98-102.	1.4	2
44	Advances in the ultrasound diagnosis in equine reproductive medicine: New approaches. Reproduction in Domestic Animals, 2022, 57, 34-44.	1.4	2
45	Sperm Susceptibility to Oxidative Stress in the Retuertas Endangered Horse. Journal of Equine Veterinary Science, 2013, 33, 962-968.	0.9	1
46	Dataset of endometrial blood flow from pregnant and non-pregnant mares on day 7 and 8 post-ovulation. Data in Brief, 2020, 30, 105616.	1.0	0