Pedro Mp Góis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6079770/publications.pdf

Version: 2024-02-01

87 papers 4,866 citations

32 h-index 95218 68 g-index

120 all docs

120 docs citations

120 times ranked

5876 citing authors

#	Article	IF	CITATIONS
1	Boronic Acids and Esters in the Petasis-Borono Mannich Multicomponent Reaction. Chemical Reviews, 2010, 110, 6169-6193.	23.0	457
2	Recyclable Stereoselective Catalysts. Chemical Reviews, 2009, 109, 418-514.	23.0	420
3	More Sustainable Approaches for the Synthesis of N-Based Heterocycles. Chemical Reviews, 2009, 109, 2703-2802.	23.0	339
4	Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry - A European Journal, 2019, 25, 43-59.	1.7	319
5	Homologation Reaction of Ketones with Diazo Compounds. Chemical Reviews, 2016, 116, 2937-2981.	23.0	275
6	Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chemical Society Reviews, 2019, 48, 3513-3536.	18.7	191
7	Iminoboronates: A New Strategy for Reversible Protein Modification. Journal of the American Chemical Society, 2012, 134, 10299-10305.	6.6	190
8	Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nature Nanotechnology, 2019, 14, 891-901.	15.6	167
9	Construction of homogeneous antibody–drug conjugates using site-selective protein chemistry. Chemical Science, 2016, 7, 2954-2963.	3.7	128
10	Tuning the Reactivity of Dirhodium(II) Complexes with Axial N-Heterocyclic Carbene Ligands: The Arylation of Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 5750-5753.	7.2	113
11	NHC/Iron cooperative catalysis: aerobic oxidative esterification of aldehydes with phenols. Organic and Biomolecular Chemistry, 2011, 9, 3126.	1.5	111
12	Cysteineâ€Selective Reactions for Antibody Conjugation. Angewandte Chemie - International Edition, 2014, 53, 10585-10587.	7.2	111
13	Fine Tuning of Dirhodium(II) Complexes: Exploring the Axial Modification. ACS Catalysis, 2012, 2, 370-383.	5 . 5	101
14	Iminoboronates are efficient intermediates for selective, rapid and reversible N-terminal cysteine functionalisation. Chemical Science, 2016, 7, 5052-5058.	3.7	97
15	Axial Coordination of NHC Ligands on Dirhodium(II) Complexes: Generation of a New Family of Catalysts. Journal of Organic Chemistry, 2008, 73, 4076-4086.	1.7	94
16	Water as the reaction medium for multicomponent reactions based on boronic acids. Tetrahedron, 2010, 66, 2736-2745.	1.0	91
17	Rh(II)-Catalyzed Intramolecular Câ^H Insertion of Diazo Substrates in Water:Â Scope and Limitations. Journal of Organic Chemistry, 2006, 71, 5489-5497.	1.7	88
18	Simple transformation of crystalline chiral natural anions to liquid medium and their use to induce chirality. Chemical Communications, 2006, , 2371-2372.	2.2	78

#	Article	IF	Citations
19	NHCâ^'Iron-Catalyzed Aerobic Oxidative Aromatic Esterification of Aldehydes using Boronic Acids. Organic Letters, 2010, 12, 2686-2689.	2.4	71
20	Water: A Suitable Medium for the Petasis Boronoâ€Mannich Reaction. European Journal of Organic Chemistry, 2009, 2009, 1859-1863.	1.2	65
21	Regio- and Stereoselective Dirhodium(II)-Catalysed Intramolecular Câ ⁻ 'H Insertion Reactions ofα-Diazo-α-(dialkoxyphosphoryl)acetamides and -acetates. European Journal of Organic Chemistry, 2003, 2003, 3798-3810.	1.2	63
22	A Threeâ€Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chemistry - A European Journal, 2016, 22, 1631-1637.	1.7	56
23	Rh(ii) catalysed intramolecular C–H insertion of diazo substrates in water: a simple and efficient approach to catalyst reuse. Chemical Communications, 2005, , 391-393.	2.2	50
24	α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol–gel matrices: Activity and stability studies. Journal of Biotechnology, 2011, 152, 147-158.	1.9	47
25	Efficient catalyst reuse by simple dissolution in non-conventional media. Chemical Communications, 2007, , 2669-2679.	2.2	46
26	Dirhodium(II)-catalysed Cî—,H insertion on α-diazo-α-phosphono-acetamides in an ionic liquid. Tetrahedron Letters, 2003, 44, 6571-6573.	0.7	43
27	Making expensive dirhodium(ii) catalysts cheaper: Rh(ii) recycling methods. Organic and Biomolecular Chemistry, 2012, 10, 3357.	1.5	43
28	Targeting cancer cells with folic acid–iminoboronate fluorescent conjugates. Chemical Communications, 2014, 50, 5261-5263.	2.2	42
29	Diazaborines as New Inhibitors of Human Neutrophil Elastase. ACS Omega, 2018, 3, 7418-7423.	1.6	38
30	Alkylpalladium N-Heterocyclic Carbene Complexes: Synthesis, Reactivity, and Catalytic Properties. Organometallics, 2008, 27, 6411-6418.	1.1	37
31	Reversible Lysine Modification on Proteins by Using Functionalized Boronic Acids. Chemistry - A European Journal, 2015, 21, 8182-8187.	1.7	32
32	Discovery of new heterocycles with activity against human neutrophile elastase based on a boron promoted one-pot assembly reaction. Organic and Biomolecular Chemistry, 2013, 11, 4465.	1.5	31
33	Glycerol as an Efficient Medium for the Petasis Borono–Mannich Reaction. ChemistryOpen, 2015, 4, 39-46.	0.9	31
34	Selective arylation of aldehydes with di-rhodium(II)/NHC catalysts. Tetrahedron, 2010, 66, 8494-8502.	1.0	30
35	Câ^'H Carbene Insertion of α-Diazo Acetamides by Photolysis in Non-Conventional Media. Journal of Organic Chemistry, 2008, 73, 5926-5932.	1.7	29
36	N-Heterocyclic Carbene Catalyzed Addition of Aldehydes to Diazo Compounds: Stereoselective Synthesis of N-Acylhydrazones. Organic Letters, 2013, 15, 1760-1763.	2.4	29

#	Article	IF	CITATIONS
37	Modular Assembly of Reversible Multivalent Cancerâ€Cellâ€Targeting Drug Conjugates. Angewandte Chemie - International Edition, 2017, 56, 9346-9350.	7.2	29
38	Intramolecular C–H insertion using NHC–di-rhodium(II) complexes: the influence of axial coordination. Tetrahedron Letters, 2008, 49, 7372-7375.	0.7	28
39	Electronic and Functional Scope of Boronic Acid Derived Salicylidenehydrazone (BASHY) Complexes as Fluorescent Dyes. Journal of Organic Chemistry, 2017, 82, 7151-7158.	1.7	28
40	Efficient Aminoâ€Sulfhydryl Stapling on Peptides and Proteins Using Bifunctional NHSâ€Activated Acrylamides. Angewandte Chemie - International Edition, 2021, 60, 10850-10857.	7.2	28
41	Dual Stimuli-Responsive Dynamic Covalent Peptide Tags: Toward Sequence-Controlled Release in Tumor-like Microenvironments. Journal of the American Chemical Society, 2021, 143, 17047-17058.	6.6	28
42	Asymmetric Intramolecular Ci£¿H Insertion of αâ€Diazoacetamides in Water by Dirhodium(II) Catalysts Derived from Natural Amino Acids. Advanced Synthesis and Catalysis, 2012, 354, 2921-2927.	2.1	26
43	Sequence Programming with Dynamic Boronic Acid/Catechol Binary Codes. Journal of the American Chemical Society, 2019, 141, 14026-14031.	6.6	26
44	Preparation of enantioselective enriched α-(dialkoxyphosphoryl)lactams via intramolecular CH insertion with chiral dirhodium(II) catalysts. Journal of Molecular Catalysis A, 2005, 227, 17-24.	4.8	24
45	Circularly Polarized Luminescence of Boronic Acid-Derived Salicylidenehydrazone Complexes Containing Chiral Boron as Stereogenic Unit. Journal of Organic Chemistry, 2018, 83, 14057-14062.	1.7	24
46	Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells. Chemical Communications, 2017, 53, 368-371.	2.2	23
47	Unveiling the Potential of Transition Metal Complexes for Medicine: Translational <i>in Situ</i> Activation of Metalâ€Based Drugs from Bench to <i>in Vivo</i> Applications. ChemBioChem, 2021, 22, 1740-1742.	1.3	23
48	Rhodium(I) N-Heterocyclic Carbene Complexes as Catalysts for Hydroformylation of Olefins: An Overview. Current Organic Synthesis, 2011, 8, 764-775.	0.7	23
49	Four-Component Assembly of Chiral N–B Heterocycles with a Natural Product-Like Framework. Organic Letters, 2012, 14, 988-991.	2.4	22
50	New dirhodium complex with activity towards colorectal cancer. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3413-3415.	1.0	21
51	Improved thermostable polyvinyl alcohol electrospun nanofibers with entangled naringinase used in a novel mini-packed bed reactor. Bioresource Technology, 2016, 213, 208-215.	4.8	20
52	Nâ€Heterocyclic Carbene Dirhodium(II) Complexes as Catalysts for Allylic and Benzylic Oxidations. European Journal of Organic Chemistry, 2013, 2013, 1471-1478.	1.2	19
53	Ringâ€Expansion Reaction of Isatins with Ethyl Diazoacetate Catalyzed by Dirhodium(II)/DBU Metalâ€Organic System: En Route to Viridicatin Alkaloids. European Journal of Organic Chemistry, 2013, 2013, 6280-6290.	1.2	18
54	NHC catalysed direct addition of HMF to diazo compounds: synthesis of acyl hydrazones with antitumor activity. RSC Advances, 2014, 4, 29352-29356.	1.7	18

#	Article	IF	CITATIONS
55	Phenylalanine iminoboronates as new phenylalanine hydroxylase modulators. RSC Advances, 2014, 4, 61022-61027.	1.7	16
56	A Sustainable Protocol for the Aqueous Multicomponent Petasis Borono–Mannich Reaction. Journal of Chemical Education, 2012, 89, 799-802.	1.1	15
57	Chemoselective cysteine or disulfide modification <i>via</i> single atom substitution in chloromethyl acryl reagents. Chemical Science, 2021, 12, 13321-13330.	3.7	15
58	Intramolecular C–H insertion catalyzed by dirhodium(II) complexes using CO ₂ as the reaction media. Green Chemistry Letters and Reviews, 2012, 5, 211-240.	2.1	14
59	Boronic acids as efficient cross linkers for PVA: synthesis and application of tunable hollow microspheres in biocatalysis. Tetrahedron, 2016, 72, 7293-7305.	1.0	14
60	Diazaborines Are a Versatile Platform to Develop ROSâ€Responsive Antibody Drug Conjugates**. Angewandte Chemie - International Edition, 2021, 60, 25914-25921.	7.2	14
61	Hypervalent Iodine Mediated Sulfonamide Synthesis. European Journal of Organic Chemistry, 2019, 2019, 2695-2701.	1.2	13
62	Rhodiumâ€Catalysed Tandem Hydroformylation/Arylation Reaction with Boronic Acids. Advanced Synthesis and Catalysis, 2014, 356, 1223-1228.	2.1	12
63	<i>N,O</i> â€lminoboronates: Reversible Iminoboronates with Improved Stability for Cancer Cells Targeted Delivery. Chemistry - A European Journal, 2018, 24, 12495-12499.	1.7	12
64	Studies on the Preparation of 4-Ethoxyalkyliden and 4-Aminoalkyliden-5(4H)-oxazolones. Synthetic Communications, 2003, 33, 1285-1299.	1.1	11
65	Chimeric Small Antibody Fragments as Strategy to Deliver Therapeutic Payloads. Advances in Protein Chemistry and Structural Biology, 2018, 112, 143-182.	1.0	11
66	Cyanineâ€Like Boronic Acidâ€Derived Salicylidenehydrazone Complexes (Cyâ€BASHY) for Bioimaging Applications. Chemistry - A European Journal, 2020, 26, 14064-14069.	1.7	9
67	Engineering Boron Hot Spots for the Siteâ€Selective Installation of Iminoboronates on Peptide Chains. Chemistry - A European Journal, 2020, 26, 15226-15231.	1.7	8
68	Cyclization of Diazoacetamides Catalyzed by N-Heterocyclic Carbene Dirhodium(II) Complexes. Synthesis, 2009, 2009, 3519-3526.	1,2	7
69	3.19 The Wolff Rearrangement. , 2014, , 944-991.		7
70	BASHY Dye Platform Enables the Fluorescence Bioimaging of Myelin Debris Phagocytosis by Microglia during Demyelination. Cells, 2021, 10, 3163.	1.8	7
71	Tetra-Î⅓-acetato-bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]rhodium(II)}(<i>Rh</i> â€" <i>Rh</i>) tetrahydrofuran tetrasolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, m345-m348.	0.4	6
72	Modular Assembly of Reversible Multivalent Cancerâ€Cellâ€Targeting Drug Conjugates. Angewandte Chemie, 2017, 129, 9474-9478.	1.6	6

#	Article	IF	Citations
73	The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids. International Journal of Molecular Sciences, 2019, 20, 5578.	1.8	6
74	Hypervalent Iodine(III) Reagents with Transferable Primary Amines: Structure and Reactivity on the Electrophilic α-Amination of Stabilized Enolates. Organic Letters, 2022, 24, 776-781.	2.4	6
75	Highly Efficient Energy Transfer Cassettes by Assembly of Boronic Acid Derived Salicylidenehydrazone Complexes. ChemPhotoChem, 2018, 2, 1038-1045.	1.5	5
76	Synthesis of 4-substituted-3-Hydroxyquinolin-2(1H)-ones with anticancer activity. Tetrahedron, 2020, 76, 130983.	1.0	5
77	Modulation of Human Phenylalanine Hydroxylase by 3-Hydroxyquinolin-2(1H)-One Derivatives. Biomolecules, 2021, 11, 462.	1.8	5
78	The BASHY Platform Enables the Assembly of a Fluorescent Bortezomib–GV1001 Conjugate. ACS Medicinal Chemistry Letters, 2022, 13, 128-133.	1.3	4
79	A 2-formylphenylboronic acid (2FPBA)-maleimide crosslinker: a versatile platform for Cys-peptideâ€"hydrazine conjugation and interplay. Organic and Biomolecular Chemistry, 2021, 19, 6221-6226.	1.5	3
80	Efficient Aminoâ€Sulfhydryl Stapling on Peptides and Proteins Using Bifunctional NHSâ€Activated Acrylamides. Angewandte Chemie, 2021, 133, 10945-10952.	1.6	3
81	Inserção C-H de carbenóides de ródio em água e reutilização do catalisador. Quimica Nova, 2007, 30, 1768-1772.	0.3	2
82	Rh(II)-Catalyzed Intramolecular Câ€"H Insertion of Diazo Substrates in Water: A Simple and Efficient Approach to Catalyst Reuse ChemInform, 2005, 36, no.	0.1	1
83	Studies on the Preparation of 4-Ethoxyalkyliden and 4-Aminoalkyliden-5(4H)-oxazolones ChemInform, 2003, 34, no.	0.1	0
84	Dirhodium(II)-Catalyzed C—H Insertion on α-Diazo-α-phosphono-acetamides in an Ionic Liquid ChemInform, 2003, 34, no.	0.1	0
85	A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chemistry - A European Journal, 2016, 22, 1537-1537.	1.7	0
86	More Sustainable Synthetic Organic Chemistry Approaches Based on Catalyst Reuse., 2007,, 103-120.		0
87	Diazaborines Are a Versatile Platform to Develop ROSâ€Responsive Antibody Drug Conjugates**. Angewandte Chemie, 2021, 133, 26118-26125.	1.6	0