
M Bayani Cardenas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607879/publications.pdf Version: 2024-02-01

M RAVANI CADDENAS

#	Article	IF	CITATIONS
1	The global volume and distribution of modernÂgroundwater. Nature Geoscience, 2016, 9, 161-167.	5.4	450
2	Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 2004, 40, .	1.7	354
3	Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geoscience, 2015, 8, 941-945.	5.4	247
4	Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, 2017, 10, 425-429.	5.4	210
5	Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 2007, 43, .	1.7	205
6	Nutrient cycling in bedform induced hyporheic zones. Geochimica Et Cosmochimica Acta, 2012, 84, 47-61.	1.6	191
7	Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river. Hydrological Processes, 2009, 23, 2129-2137.	1.1	170
8	Hyporheic flow and residence time distributions in heterogeneous crossâ€bedded sediment. Water Resources Research, 2009, 45, .	1.7	158
9	Surface waterâ€groundwater interface geomorphology leads to scaling of residence times. Geophysical Research Letters, 2008, 35, .	1.5	154
10	Modification of the <scp>L</scp> ocal <scp>C</scp> ubic <scp>L</scp> aw of fracture flow for weak inertia, tortuosity, and roughness. Water Resources Research, 2015, 51, 2064-2080.	1.7	149
11	Exchange across a sediment–water interface with ambient groundwater discharge. Journal of Hydrology, 2007, 346, 69-80.	2.3	145
12	Streamâ€aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resources Research, 2009, 45, .	1.7	140
13	Hydrodynamics of coupled flow above and below a sediment–water interface with triangular bedforms. Advances in Water Resources, 2007, 30, 301-313.	1.7	136
14	The influence of ambient groundwater discharge on exchange zones induced by current–bedform interactions. Journal of Hydrology, 2006, 331, 103-109.	2.3	133
15	Poreâ€scale trapping of supercritical CO ₂ and the role of grain wettability and shape. Geophysical Research Letters, 2013, 40, 3878-3882.	1.5	132
16	Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research, 2015, 51, 3601-3616.	1.7	124
17	Residence time of bedform-driven hyporheic exchange. Advances in Water Resources, 2008, 31, 1382-1386.	1.7	121
18	Navierâ€Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies. Geophysical Research Letters, 2007, 34, .	1.5	120

#	Article	IF	CITATIONS
19	Lateral hyporheic exchange throughout the Mississippi River network. Nature Geoscience, 2014, 7, 413-417.	5.4	116
20	Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of TÃ ³ th flow. Geophysical Research Letters, 2007, 34, .	1.5	115
21	Three-dimensional model of modern channel bend deposits. Water Resources Research, 2003, 39, .	1.7	114
22	Hyporheic exchange due to channelâ \in spanning logs. Water Resources Research, 2011, 47, .	1.7	106
23	Dynamics of hyporheic flow and heat transport across a bedâ€toâ€bank continuum in a large regulated river. Water Resources Research, 2011, 47, .	1.7	95
24	Denitrification in the banks of fluctuating rivers: The effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow. Water Resources Research, 2017, 53, 7951-7967.	1.7	95
25	Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nature Communications, 2020, 11, 1479.	5.8	95
26	Groundwater flow, transport, and residence times through topographyâ€driven basins with exponentially decreasing permeability and porosity. Water Resources Research, 2010, 46, .	1.7	90
27	Residence time distributions in sinuosityâ€driven hyporheic zones and their biogeochemical effects. Water Resources Research, 2012, 48, .	1.7	87
28	Effects of current–bed form induced fluid flow on the thermal regime of sediments. Water Resources Research, 2007, 43, .	1.7	82
29	A comparative experimental and multiphysics computational fluid dynamics study of coupled surface–subsurface flow in bed forms. Water Resources Research, 2012, 48, .	1.7	82
30	Constraining denitrification in permeable wave-influenced marine sediment using linked hydrodynamic and biogeochemical modeling. Earth and Planetary Science Letters, 2008, 275, 127-137.	1.8	81
31	Quantifying denitrification in rippled permeable sands through combined flume experiments and modeling. Limnology and Oceanography, 2012, 57, 1217-1232.	1.6	77
32	The importance and challenge of hyporheic mixing. Water Resources Research, 2017, 53, 3565-3575.	1.7	77
33	Water table dynamics and groundwater–surface water interaction during filling and draining of a large fluvial island due to damâ€induced river stage fluctuations. Water Resources Research, 2010, 46, .	1.7	76
34	The effect of river bend morphology on flow and timescales of surface water–groundwater exchange across pointbars. Journal of Hydrology, 2008, 362, 134-141.	2.3	75
35	Effects of inertia and directionality on flow and transport in a rough asymmetric fracture. Journal of Geophysical Research, 2009, 114, .	3.3	74
36	Non-Fickian transport through two-dimensional rough fractures: Assessment and prediction. Water Resources Research, 2014, 50, 871-884.	1.7	73

#	Article	IF	CITATIONS
37	Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resources Research, 2017, 53, 6642-6662.	1.7	72
38	Hyporheic temperature dynamics and heat exchange near channelâ€spanning logs. Water Resources Research, 2012, 48, .	1.7	71
39	Simultaneous rejuvenation and aging of groundwater in basins due to depthâ€decaying hydraulic conductivity and porosity. Geophysical Research Letters, 2010, 37, .	1.5	68
40	The role of eddies inside pores in the transition from Darcy to Forchheimer flows. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	67
41	Devastation of aquifers from tsunamiâ€ike storm surge by Supertyphoon Haiyan. Geophysical Research Letters, 2015, 42, 2844-2851.	1.5	67
42	Vegetation controls on soil moisture distribution in the Valles Caldera, New Mexico, during the North American monsoon. Ecohydrology, 2008, 1, 225-238.	1.1	66
43	Transport Zonation Limits Coupled Nitrification-Denitrification in Permeable Sediments. Environmental Science & Technology, 2013, 47, 13404-13411.	4.6	65
44	A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resources Research, 2009, 45, .	1.7	63
45	Geoelectrical Imaging of Hyporheic Exchange and Mixing of River Water and Groundwater in a Large Regulated River. Environmental Science & Technology, 2011, 45, 1407-1411.	4.6	61
46	Groundâ€based thermography of fluvial systems at low and high discharge reveals potential complex thermal heterogeneity driven by flow variation and bioroughness. Hydrological Processes, 2008, 22, 980-986.	1.1	60
47	Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, ²²² Rn, and salinity measurements. Geophysical Research Letters, 2010, 37, .	1.5	58
48	Effects of Multiscale Anisotropy on Basin and Hyporheic Groundwater Flow. Ground Water, 2011, 49, 576-583.	0.7	58
49	Temperature effects on nitrogen cycling and nitrate removalâ€production efficiency in bed formâ€induced hyporheic zones. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1086-1103.	1.3	56
50	Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics. Nature Communications, 2015, 6, 8061.	5.8	55
51	Development of an empirical model relating permeability and specific stiffness for rough fractures from numerical deformation experiments. Journal of Geophysical Research: Solid Earth, 2016, 121, 4977-4989.	1.4	55
52	Threeâ€dimensional vortices in single pores and their effects on transport. Geophysical Research Letters, 2008, 35, .	1.5	54
53	Universal Relationship Between Viscous and Inertial Permeability of Geologic Porous Media. Geophysical Research Letters, 2019, 46, 1441-1448.	1.5	54
54	Diel heat transport within the hyporheic zone of a poolâ€riffleâ€pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnology and Oceanography, 2010, 55, 1741-1754.	1.6	53

#	Article	IF	CITATIONS
55	The effect of organic matter and thermal maturity on the wettability of supercritical CO2 on organic shales. International Journal of Greenhouse Gas Control, 2017, 65, 15-22.	2.3	53
56	Flow and Residence Times of Dynamic River Bank Storage and Sinuosityâ€Đriven Hyporheic Exchange. Water Resources Research, 2017, 53, 8572-8595.	1.7	53
57	Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters. Water Resources Research, 2013, 49, 1149-1162.	1.7	52
58	Mass Transfer Between Recirculation and Main Flow Zones: Is Physically Based Parameterization Possible?. Water Resources Research, 2019, 55, 345-362.	1.7	52
59	Evolution of hydraulic conductivity in the floodplain of a meandering river due to hyporheic transport of fine materials. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	51
60	Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR. Remote Sensing of Environment, 2020, 248, 112007.	4.6	51
61	Ex-Stream: A MATLAB program for calculating fluid flux through sediment–water interfaces based on steady and transient temperature profiles. Computers and Geosciences, 2011, 37, 1664-1669.	2.0	50
62	Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage. Journal of Physical Chemistry C, 2014, 118, 15103-15113.	1.5	50
63	Smallâ€scale permeability heterogeneity has negligible effects on nutrient cycling in streambeds. Geophysical Research Letters, 2013, 40, 1118-1122.	1.5	48
64	Heat transport dynamics at a sandy intertidal zone. Water Resources Research, 2013, 49, 3770-3786.	1.7	47
65	A Simple Constant-Head Injection Test for Streambed Hydraulic Conductivity Estimation. Ground Water, 2003, 41, 867-871.	0.7	46
66	Effect of experimental wood addition on hyporheic exchange and thermal dynamics in a losing meadow stream. Water Resources Research, 2012, 48, .	1.7	44
67	Effect of Permeable Biofilm on Micro- And Macro-Scale Flow and Transport in Bioclogged Pores. Environmental Science & Technology, 2013, 47, 11092-11098.	4.6	44
68	Transition from non-Fickian to Fickian longitudinal transport through 3-D rough fractures: Scale-(in)sensitivity and roughness dependence. Journal of Contaminant Hydrology, 2017, 198, 1-10.	1.6	44
69	Theory for dynamic longitudinal dispersion in fractures and rivers with Poiseuille flow. Geophysical Research Letters, 2012, 39, .	1.5	42
70	Threeâ€dimensional versus twoâ€dimensional bed formâ€induced hyporheic exchange. Water Resources Research, 2015, 51, 2923-2936.	1.7	42
71	Identifying origins of and pathways for spring waters in a semiarid basin using He, Sr, and C isotopes: Cuatrocienegas Basin, Mexico. , 2013, 9, 113-125.		41
72	Dynamics of groundwaterâ€derived nitrate and nitrous oxide in a tidal estuary from radon mass balance modeling. Limnology and Oceanography, 2013, 58, 1689-1706.	1.6	41

#	Article	IF	CITATIONS
73	Thermal regime of duneâ€covered sediments under gaining and losing water bodies. Journal of Geophysical Research, 2007, 112, .	3.3	37
74	Estimating submarine groundwater discharge in a South Pacific coral reef lagoon using different radioisotope and geophysical approaches. Marine Chemistry, 2013, 156, 49-60.	0.9	37
75	Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds. Geophysical Research Letters, 2018, 45, 7596-7605.	1.5	37
76	Extended Roof snap-off for a continuous nonwetting fluid and an example case for supercritical CO2. Advances in Water Resources, 2014, 64, 34-46.	1.7	35
77	Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Bolinao, Northwestern Philippines. Marine Pollution Bulletin, 2011, 63, 195-200.	2.3	34
78	Soil moisture variation and dynamics across a wildfire burn boundary in a loblolly pine (Pinus taeda) forest. Journal of Hydrology, 2014, 519, 490-502.	2.3	33
79	Influence of dynamic factors on nonwetting fluid snapâ€off in pores. Water Resources Research, 2015, 51, 9182-9189.	1.7	32
80	Ripple Effects: Bed Form Morphodynamics Cascading Into Hyporheic Zone Biogeochemistry. Water Resources Research, 2019, 55, 7320-7342.	1.7	32
81	Thermal skin effect of pipes in streambeds and its implications on groundwater flux estimation using diurnal temperature signals. Water Resources Research, 2010, 46, .	1.7	31
82	Hyporheic flow and dissolved oxygen distribution in fish nests: The effects of open channel velocity, permeability patterns, and groundwater upwelling. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3113-3130.	1.3	31
83	Hyporheic Exchange Driven by Threeâ€Ðimensional Sandy Bed Forms: Sensitivity to and Prediction from Bed Form Geometry. Water Resources Research, 2018, 54, 4131-4149.	1.7	31
84	Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood. Hydrogeology Journal, 2016, 24, 923-935.	0.9	30
85	Analysis of the Effects of Dam Release Properties and Ambient Groundwater Flow on Surface Waterâ€Groundwater Exchange Over a 100â€km‣ong Reach. Water Resources Research, 2019, 55, 8526-8546	.1.7	30
86	The Complexity of Nonlinear Flow and nonâ€Fickian Transport in Fractures Driven by Threeâ€Dimensional Recirculation Zones. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020028.	1.4	30
87	Dynamics and dislodgment from pore constrictions of a trapped nonwetting droplet stimulated by seismic waves. Water Resources Research, 2013, 49, 4206-4218.	1.7	29
88	The isotope effect of denitrification in permeable sediments. Geochimica Et Cosmochimica Acta, 2014, 133, 156-167.	1.6	29
89	An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation. Journal of Contaminant Hydrology, 2015, 179, 47-54.	1.6	29
90	Active Layer Groundwater Flow: The Interrelated Effects of Stratigraphy, Thaw, and Topography. Water Resources Research, 2019, 55, 6555-6576.	1.7	29

#	Article	IF	CITATIONS
91	Analysis of the temperature dynamics of a proglacial river using time-lapse thermal imaging and energy balance modeling. Journal of Hydrology, 2014, 519, 1963-1973.	2.3	27
92	Heat transport in hyporheic zones due to bedforms: An experimental study. Water Resources Research, 2014, 50, 3568-3582.	1.7	27
93	Enhancement of denitrification in permeable carbonate sediment due to intra-granular porosity: A multi-scale modelling analysis. Geochimica Et Cosmochimica Acta, 2014, 141, 440-453.	1.6	27
94	The rapid yet uneven turnover of Earth's groundwater. Geophysical Research Letters, 2017, 44, 5511-5520.	1.5	27
95	Highâ€resolution inâ€situ thermal imaging of microbial mats at El Tatio Geyser, Chile shows coupling between community color and temperature. Geophysical Research Letters, 2009, 36, .	1.5	25
96	Lessons from and assessment of Boussinesq aquifer modeling of a large fluvial island in a dam-regulated river. Advances in Water Resources, 2010, 33, 1359-1366.	1.7	25
97	Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting. Journal of Hydrology, 2014, 517, 508-520.	2.3	22
98	Wettability measurement under high <scp>P</scp> â€ <scp>T</scp> conditions using <scp>X</scp> â€ray imaging with application to the brineâ€supercritical <scp>C</scp> O ₂ system. Geochemistry, Geophysics, Geosystems, 2015, 16, 2858-2864.	1.0	21
99	Textural and compositional controls on mudrock breakthrough pressure and permeability. Advances in Water Resources, 2018, 121, 162-172.	1.7	21
100	Flexible and Modular Simultaneous Modeling of Flow and Reactive Transport in Rivers and Hyporheic Zones. Water Resources Research, 2020, 56, e2019WR026528.	1.7	21
101	The Sensitivity of Hyporheic Exchange to Fractal Properties of Riverbeds. Water Resources Research, 2020, 56, e2019WR026560.	1.7	21
102	Waveâ€driven porewater and solute circulation through rippled elastic sediment under highly transient forcing. Limnology & Oceanography Fluids & Environments, 2011, 1, 23-37.	1.7	20
103	Diel Stream Temperature Effects on Nitrogen Cycling in Hyporheic Zones. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2743-2760.	1.3	20
104	Comparison of hyporheic exchange under covered and uncovered channels based on linked surface and groundwater flow simulations. Water Resources Research, 2008, 44, .	1.7	19
105	Classification and delineation of groundwater–lake interactions in the Nebraska Sand Hills (USA) using electrical resistivity patterns. Hydrogeology Journal, 2012, 20, 1483-1495.	0.9	19
106	The Impact of the Degree of Aquifer Confinement and Anisotropy on Tidal Pulse Propagation. Ground Water, 2017, 55, 519-531.	0.7	19
107	Direct simulation of pore level Fickian dispersion scale for transport through dense cubic packed spheres with vortices. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	18
108	The negligible effect of bed form migration on denitrification in hyporheic zones of permeable sediments. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 538-548.	1.3	18

#	Article	IF	CITATIONS
109	Empirical Models for Predicting Water and Heat Flow Properties of Permafrost Soils. Geophysical Research Letters, 2020, 47, e2020GL087646.	1.5	18
110	Climate, river network, and vegetation cover relationships across a climate gradient and their potential for predicting effects of decadal-scale climate change. Journal of Hydrology, 2013, 488, 101-109.	2.3	17
111	Disentangling the Simultaneous Effects of Inertial Losses and Fracture Dilation on Permeability of Pressurized Fractured Rocks. Geophysical Research Letters, 2019, 46, 8862-8871.	1.5	17
112	Application of highâ€resolution, remotely sensed data for transient storage modeling parameter estimation. Water Resources Research, 2012, 48, .	1.7	16
113	An Analytical Approach for Flow Analysis in Aquifers with Spatially Varying Top Boundary. Ground Water, 2015, 53, 335-341.	0.7	16
114	Submarine Groundwater and Vent Discharge in a Volcanic Area Associated With Coastal Acidification. Geophysical Research Letters, 2020, 47, e2019GL085730.	1.5	16
115	Hydraulic and thermal response of groundwater–surface water exchange to flooding in an experimental aquifer. Journal of Hydrology, 2012, 472-473, 184-192.	2.3	15
116	Connecting Pressureâ€Saturation and Relative Permeability Models to Fracture Properties: The Case of Capillaryâ€Dominated Flow of Supercritical CO ₂ and Brine. Water Resources Research, 2018, 54, 6965-6982.	1.7	15
117	The effects of floods on the temperature of riparian groundwater. Hydrological Processes, 2018, 32, 1267-1281.	1.1	14
118	High-resolution mapping of river-hydrothermal water mixing: Yellowstone National Park. International Journal of Remote Sensing, 2011, 32, 2765-2777.	1.3	12
119	Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change. Geophysical Research Letters, 2017, 44, 4116-4123.	1.5	12
120	Offshore Submarine Groundwater Discharge at a Coral Reef Front Controlled by Faults. Geochemistry, Geophysics, Geosystems, 2019, 20, 3170-3185.	1.0	12
121	Hyporheic Exchange Driven by Submerged Rigid Vegetation: A Modeling Study. Water Resources Research, 2021, 57, e2019WR026675.	1.7	12
122	Terrestrial smokers: Thermal springs due to hydrothermal convection of groundwater connected to surface water. Geophysical Research Letters, 2012, 39, .	1.5	10
123	Seasonal Shifts in Soil Moisture throughout a Semiarid Hillslope Ecotone during Drought: A Geoelectrical View. Vadose Zone Journal, 2017, 16, 1-17.	1.3	10
124	Experimental and simulation study of carbon dioxide, brine, and muscovite surface interactions. Journal of Petroleum Science and Engineering, 2017, 155, 78-88.	2.1	10
125	Absence of ice-bonded permafrost beneath an Arctic lagoon revealed by electrical geophysics. Science Advances, 2020, 6, .	4.7	10
126	Tracing Bank Storage and Hyporheic Exchange Dynamics Using ²²² Rn: Virtual and Field Tests and Comparison With Other Tracers. Water Resources Research, 2021, 57, e2020WR028960.	1.7	10

#	Article	IF	CITATIONS
127	Diel stream temperature regimes of Bukovsky regions of the conterminous United States. Geophysical Research Letters, 2017, 44, 2264-2271.	1.5	9
128	Seawaterâ€groundwater mixing in and fluxes from coastal sediment overlying discrete fresh seepage zones: A modeling study. Journal of Geophysical Research: Oceans, 2017, 122, 6565-6582.	1.0	9
129	Riverbed Temperature and Heat Transport in a Hydropeaked River. Water Resources Research, 2021, 57, e2021WR029609.	1.7	9
130	Submarine Groundwater Discharge Releases CO ₂ to a Coral Reef. ACS ES&T Water, 2021, 1, 1756-1764.	2.3	9
131	Analysis of turbulent nonisothermal mixing between a jet and cooler ambient water using thermal imagery. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	8
132	Twoâ€Phase Fluid Flow Properties of Rough Fractures With Heterogeneous Wettability: Analysis With Lattice Boltzmann Simulations. Water Resources Research, 2021, 57, .	1.7	8
133	Closing the Global Marine ²²⁶ Ra Budget Reveals the Biological Pump as a Dominant Removal Flux in the Upper Ocean. Geophysical Research Letters, 2022, 49, .	1.5	7
134	Hyporheic Exchange in Sand Dunes Under a Freely Deforming River Water Surface. Water Resources Research, 2021, 57, e2020WR028817.	1.7	6
135	The effect of permeability on Darcy-to-Forchheimer flow transition. Journal of Hydrology, 2022, 610, 127836.	2.3	6
136	Assessing student understanding of physical hydrology. Hydrology and Earth System Sciences, 2013, 17, 829-836.	1.9	5
137	Analysis of permeability change in dissolving rough fractures using depth-averaged flow and reactive transport models. International Journal of Greenhouse Gas Control, 2019, 91, 102824.	2.3	5
138	The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology. Journal of Geoscience Education, 2015, 63, 127-139.	0.8	4
139	Comment on "Flow resistance and bed form geometry in a wide alluvial channel―by Shu-Qing Yang, Soon-Keat Tan, and Siow-Yong Lim. Water Resources Research, 2006, 42, .	1.7	3
140	Evaluating a Laboratory Flume Microbiome as a Window Into Natural Riverbed Biogeochemistry. Frontiers in Water, 2021, 3, .	1.0	3
141	Aquifer Diffusivity Estimation Through Joint Inversion of the Amplitude Ratios and Time Lags of Dominant Frequencies of Fluctuating Head. Water Resources Research, 2021, 57, e2020WR027912.	1.7	3
142	Groundwater–surface water interactions in a river estuary and the importance of geomorphology: Insights from hydraulic, thermal and geophysical observations. Hydrological Processes, 2021, 35, e14372.	1.1	3
143	Resonance of droplets in constricted capillary tubes: Critical factors and nonlinearity. Physical Review Fluids, 2020, 5, .	1.0	3
144	Hyporheic Exchange Due to Cobbles on Sandy Beds. Water Resources Research, 2022, 58, .	1.7	3

#	Article	IF	CITATIONS
145	Aerobic respiration in riparian exchange zones of regulated river corridors. Hydrological Processes, 2021, 35, .	1.1	2
146	Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service to <i>Reviews of Geophysics</i> . Reviews of Geophysics, 2017, 55, 860-863.	9.0	1
147	Enabling the Application of Large Footprint Openâ€Bottom Permeameters Through New Shape Factors. Water Resources Research, 2021, 57, e2020WR029315.	1.7	1
148	Applications of DC resistivity for mapping hydrogeologic processes in coastal areas. , 2013, , .		0
149	Appreciation of 2017 GRL Peer Reviewers. Geophysical Research Letters, 2018, 45, 4494-4528.	1.5	0
150	Thank You to Our 2018 Peer Reviewers. Geophysical Research Letters, 2019, 46, 12608-12636.	1.5	0