
## James Joseph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607857/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF        | CITATIONS      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 1  | DNAâ€Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo. Advanced<br>Healthcare Materials, 2021, 10, e2001739.                                                          | 3.9       | 5              |
| 2  | A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms. IEEE Transactions on Medical Imaging, 2021, 40, 3593-3603. | 5.4       | 10             |
| 3  | Multi-modal imaging of high-risk ductal carcinoma in situ of the breast using C2Am: a targeted cell death imaging agent. Breast Cancer Research, 2021, 23, 25.                                 | 2.2       | 3              |
| 4  | Technical validation studies of a dual-wavelength LED-based photoacoustic and ultrasound imaging system. Photoacoustics, 2021, 22, 100267.                                                     | 4.4       | 9              |
| 5  | First experience in clinical application of hyperspectral endoscopy for evaluation of colonic polyps.<br>Journal of Biophotonics, 2021, 14, e202100078.                                        | 1.1       | 10             |
| 6  | IPASC: a Community-Driven Consensus-Based Initiative Towards Standardisation in Photoacoustic<br>Imaging. , 2020, , .                                                                          |           | 1              |
| 7  | Optoacoustic Imaging Detects Hormone-Related Physiological Changes of Breast Parenchyma.<br>Ultraschall in Der Medizin, 2019, 40, 757-763.                                                     | 0.8       | 8              |
| 8  | An Activatable Cancer-Targeted Hydrogen Peroxide Probe for Photoacoustic and Fluorescence<br>Imaging. Cancer Research, 2019, 79, 5407-5417.                                                    | 0.4       | 31             |
| 9  | A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gastrointestinal tract. Nature Communications, 2019, 10, 1902.                                                 | 5.8       | 75             |
| 10 | Quantitative phase and polarization imaging through an optical fiber applied to detection of early esophageal tumorigenesis. Journal of Biomedical Optics, 2019, 24, 1.                        | 1.4       | 16             |
| 11 | International Photoacoustic Standardisation Consortium (IPASC): overview (Conference) Tj ETQq1 1 0.784314                                                                                      | rgBT /Ove | rlock 10 Tf 50 |
| 12 | Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle.<br>Optics Express, 2019, 27, 23929.                                                           | 1.7       | 14             |
| 13 | Engineered contrast agent platforms for enhanced photoacoustic signal and tumor uptake<br>(Conference Presentation). , 2019, , .                                                               |           | 0              |
| 14 | An active DNA-based nanoprobe for photoacoustic pH imaging. Chemical Communications, 2018, 54, 10176-10178.                                                                                    | 2.2       | 6              |
| 15 | Oxygen-Enhanced and Dynamic Contrast-Enhanced Optoacoustic Tomography Provide Surrogate<br>Biomarkers of Tumor Vascular Function, Hypoxia, and Necrosis. Cancer Research, 2018, 78, 5980-5991. | 0.4       | 44             |
| 16 | Bimodal reflectance and fluorescence multispectral endoscopy based on spectrally resolving detector arrays. Journal of Biomedical Optics, 2018, 24, 1.                                         | 1.4       | 17             |
| 17 | Evaluation of Precision in Optoacoustic Tomography for Preclinical Imaging in Living Subjects.<br>Journal of Nuclear Medicine, 2017, 58, 807-814.                                              | 2.8       | 64             |
| 18 | Quantitative imaging of tumor vasculature using multispectral optoacoustic tomography (MSOT). ,<br>2017                                                                                        |           | 0              |

JAMES JOSEPH

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. Journal of<br>Biophotonics, 2017, 10, 840-853.                                                                  | 1.1 | 29        |
| 20 | Distance dependent photoacoustics revealed through DNA nanostructures. Nanoscale, 2017, 9,<br>16193-16199.                                                                                            | 2.8 | 15        |
| 21 | Towards Quantitative Evaluation of Tissue Absorption Coefficients Using Light Fluence Correction in Optoacoustic Tomography. IEEE Transactions on Medical Imaging, 2017, 36, 322-331.                 | 5.4 | 73        |
| 22 | A multispectral endoscope based on spectrally resolved detector arrays. Proceedings of SPIE, 2017, , .                                                                                                | 0.8 | 3         |
| 23 | Measurement of changes in blood oxygenation using Multispectral Optoacoustic Tomography (MSOT) allows assessment of tumor development. , 2016, , .                                                    |     | 1         |
| 24 | Real time monitoring of aminothiol level in blood using a near-infrared dye assisted deep tissue fluorescence and photoacoustic bimodal imaging. Chemical Science, 2016, 7, 4110-4116.                | 3.7 | 63        |
| 25 | Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy. Journal of Biomedical Optics, 2016, 21, 084001.                                         | 1.4 | 23        |
| 26 | In vivo light fluence correction for determination of tissue absorption coefficient using Multispectral Optoacoustic Tomography. , 2016, , .                                                          |     | 0         |
| 27 | Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy using a targeted imaging probe. Proceedings of SPIE, 2016, , .                           | 0.8 | 0         |
| 28 | Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography. , 2015, , .                                                    |     | 0         |
| 29 | Near-Infrared Squaraine Dye Encapsulated Micelles for <i>in Vivo</i> Fluorescence and Photoacoustic<br>Bimodal Imaging. ACS Nano, 2015, 9, 5695-5704.                                                 | 7.3 | 145       |
| 30 | Three-Photon-Excited Luminescence from Unsymmetrical Cyanostilbene Aggregates: Morphology<br>Tuning and Targeted Bioimaging. ACS Nano, 2015, 9, 4796-4805.                                            | 7.3 | 51        |
| 31 | Graphene Oxide Wrapping of Gold–Silica Core–Shell Nanohybrids for Photoacoustic Signal<br>Generation and Bimodal Imaging. ChemNanoMat, 2015, 1, 39-45.                                                | 1.5 | 20        |
| 32 | Single-Pixel Phase-Corrected Fiber Bundle Endomicroscopy With Lensless Focussing Capability.<br>Journal of Lightwave Technology, 2015, 33, 3419-3425.                                                 | 2.7 | 5         |
| 33 | Evaluation of multispectral optoacoustic tomography (MSOT) performance in phantoms and in vivo. , 2015, , .                                                                                           |     | 1         |
| 34 | Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography. , 2015, , .                                                    |     | 2         |
| 35 | Coherent fiber bundle based integrated photoacoustic, ultrasound and fluorescence imaging (PAUSFI) for endoscopy and diagnostic bio-imaging applications. Laser Physics, 2014, 24, 085608.            | 0.6 | 3         |
| 36 | Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical<br>imaging-proof of concept study with a tissue mimicking phantom. Biomedical Optics Express, 2014, 5,<br>2135. | 1.5 | 27        |

JAMES JOSEPH

| #  | Article                                                                                                                                                                                                                       | IF               | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 37 | Imaging: Upconversion Nanoparticles as a Contrast Agent for Photoacoustic Imaging in Live Mice (Adv.) Tj ETQq1                                                                                                                | 1,0.7843<br>11.1 | 1ჭ rgBT /O∨o |
| 38 | Poly(Acrylic Acid)â€Capped and Dye‣oaded Graphene Oxideâ€Mesoporous Silica: A Nanoâ€Sandwich for<br>Twoâ€Photon and Photoacoustic Dualâ€Mode Imaging. Particle and Particle Systems Characterization,<br>2014, 31, 1060-1066. | 1.2              | 24           |
| 39 | Upconversion Nanoparticles as a Contrast Agent for Photoacoustic Imaging in Live Mice. Advanced<br>Materials, 2014, 26, 5633-5638.                                                                                            | 11.1             | 158          |
| 40 | Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics.<br>Journal of Biomedical Optics, 2012, 17, 0760101.                                                                       | 1.4              | 10           |
| 41 | Thermal diffusivity variations in nanoparticle administered phantom tissues – a photoacoustic<br>investigation. EPJ Applied Physics, 2012, 59, 30501.                                                                         | 0.3              | 1            |
| 42 | Calculation of optical properties of nanoparticles for biomedical applications. Proceedings of SPIE, 2011, , .                                                                                                                | 0.8              | 0            |
| 43 | Photoacoustic based surface plasmon resonance spectroscopy: an investigation. , 2011, , .                                                                                                                                     |                  | 2            |
| 44 | Effect of Composition, Dimension and Shape on the Optical Properties of Gold Nanoparticles—A<br>Theoretical Analysis. Advanced Science, Engineering and Medicine, 2011, 3, 188-196.                                           | 0.3              | 1            |
| 45 | High Resolution Optical Imaging of Epithelial and Neuronal Cells. Journal of Medical Imaging and Health Informatics, 2011, 1, 354-359.                                                                                        | 0.2              | 8            |
| 46 | Laser-induced photoacoustic spectroscopy investigation of colon phantom tissue. Applied Physics A:<br>Materials Science and Processing, 2010, 101, 567-571.                                                                   | 1.1              | 1            |