Florian Blachutzik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6078188/publications.pdf

Version: 2024-02-01

20 papers

118 citations

1478505 6 h-index 11 g-index

20 all docs

20 docs citations

20 times ranked 250 citing authors

#	Article	IF	CITATIONS
1	Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: Results from a PC-based prototype algorithm. Journal of Cardiovascular Computed Tomography, 2018, 12, 101-107.	1.3	31
2	A new novolimus-eluting bioresorbable coronary scaffold: Present status and future clinical perspectives. International Journal of Cardiology, 2017, 227, 127-133.	1.7	23
3	Safety and effectiveness of coronary intravascular lithotripsy in eccentric calcified coronary lesions: a patient-level pooled analysis from the Disrupt CAD I and CAD II Studies. Clinical Research in Cardiology, 2021, 110, 228-236.	3.3	16
4	Angiographic Findings and Revascularization Success in Patients With Acute Myocardial Infarction and Previous Coronary Bypass Grafting. American Journal of Cardiology, 2016, 118, 473-476.	1.6	12
5	Incidental Finding of Strut Malapposition Is a Predictor of Late and Very Late Thrombosis in Coronary Bioresorbable Scaffolds. Journal of Clinical Medicine, 2019, 8, 580.	2.4	7
6	Post-dilatation after implantation of bioresorbable everolimus- and novolimus-eluting scaffolds: an observational optical coherence tomography study of acute mechanical effects. Clinical Research in Cardiology, 2017, 106, 271-279.	3.3	6
7	Effect of nonâ€compliant balloon postdilatation on magnesiumâ€based bioresorbable vascular scaffolds. Catheterization and Cardiovascular Interventions, 2019, 93, 202-207.	1.7	6
8	Overlapping implantation of bioresorbable novolimus-eluting scaffolds: an observational optical coherence tomography study. Heart and Vessels, 2017, 32, 781-789.	1.2	4
9	Long-term follow-up and predictors of target lesion failure after implantation of everolimus-eluting bioresorbable scaffolds in real-world practice. International Journal of Cardiology, 2020, 312, 42-47.	1.7	4
10	Optical coherence tomography: influence of contrast concentration on image quality and diagnostic confidence. Heart and Vessels, 2017, 32, 653-659.	1.2	3
11	Latest Developments in Robotic Percutaneous Coronary Intervention. Surgical Technology International, 0, , .	0.2	2
12	Acute Mechanical Performance of Magmaris vs. DESolve Bioresorbable Scaffolds in a Real-World Scenario. Frontiers in Cardiovascular Medicine, 2021, 8, 696287.	2.4	2
13	Percutaneous coronary intervention of unprotected left main stenoses – Procedural data and outcome depending on SYNTAX I Score. Cardiovascular Revascularization Medicine, 2018, 19, 740-743.	0.8	1
14	Clinical presentation does not affect acute mechanical performance of the Novolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography. Postepy W Kardiologii Interwencyjnej, 2021, 17, 272-280.	0.2	1
15	Major coronary evaginations following implantation of bioresorbable vascular scaffolds – Clinical and OCT characteristics. Cardiovascular Revascularization Medicine, 2019, 20, 485-491.	0.8	O
16	OCTâ€assessment of scaffold resorption: Analysis of strut intensity by a new resorption index for poly―l â€lactic acid bioresorbable vascular scaffolds. Catheterization and Cardiovascular Interventions, 2019, 94, 928-935.	1.7	0
17	Fractional flow reserve and frequency of PCI in patients with coronary artery disease. Herz, 2020, 45, 752-758.	1.1	O
18	Fiveâ€year followâ€up of patients who underwent everolimusâ€eluting bioresorbable scaffold implantation. Catheterization and Cardiovascular Interventions, 2021, 97, 56-62.	1.7	0

#	Article	lF	CITATIONS
19	Dual-axis rotational coronary angiography versus conventional coronary angiography: a randomized comparison. Clinical Research in Cardiology, 2021, 110, 258-269.	3.3	О
20	Latest Developments in Robotic Percutaneous Coronary Intervention. Surgical Technology International, 2021, 38, 325-330.	0.2	0