Yaoxing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607813/publications.pdf

Version: 2024-02-01

32 9,390 24 31 g-index

53 53 53 53 12913

all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593, 130-135.	13.7	1,904
2	Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584, 450-456.	13.7	1,337
3	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022, 602, 676-681.	13.7	1,038
4	Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature, 2022, 604, 553-556.	13.7	649
5	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	5.2	543
6	Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature, 2022, 608, 603-608.	13.7	541
7	Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host and Microbe, 2021, 29, 747-751.e4.	5.1	504
8	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	5.1	444
9	Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270-275.	13.7	389
10	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	13.7	154
11	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
12	SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerging Microbes and Infections, 2020, 9, 2091-2093.	3.0	109
13	Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature, 2021, 597, 703-708.	13.7	103
14	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine, 2022, 14, .	5.8	73
15	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 0, , .	13.7	72
16	Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nature Communications, 2021, 12, 2016.	5.8	65
17	Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell Reports, 2021, 35, 108950.	2.9	54
18	Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure, 2021, 29, 655-663.e4.	1.6	52

#	Article	IF	Citations
19	Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Reports, 2021, 37, 109928.	2.9	52
20	Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nature Communications, 2022, 13, 1891.	5.8	45
21	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
22	An Immuno-Cardiac Model for Macrophage-Mediated Inflammation in COVID-19 Hearts. Circulation Research, 2021, 129, 33-46.	2.0	40
23	Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.	2.9	38
24	Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secretingÂCCL2. Stem Cell Reports, 2021, 16, 2274-2288.	2.3	37
25	An airway organoid-based screen identifies a role for the HIF1 \hat{i} ±-glycolysis axis in SARS-CoV-2 infection. Cell Reports, 2021, 37, 109920.	2.9	36
26	An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science Translational Medicine, 2022, 14, eabn6859.	5.8	31
27	Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. Journal of Virology, 2021, 95, e0237420.	1.5	27
28	A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerging Microbes and Infections, 2022, 11, 147-157.	3.0	25
29	Functional differences among the spike glycoproteins of multiple emerging severe acute respiratory syndrome coronavirus 2 variants of concern. IScience, 2021, 24, 103393.	1.9	17
30	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.	1.8	4
31	Ad26.COV2.S boosts antibody and T-cell responses following BNT162b2 vaccination. Emerging Microbes and Infections, 2021, 10, 2220-2222.	3.0	2
32	Paired Heavy and Light Chain Signatures Contribute to Potent SARS-CoV-2 Neutralization in Public Antibody Responses. SSRN Electronic Journal, 0, , .	0.4	1