
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6077918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave irradiation: more than just a method for accelerating reactions. Contemporary Organic Synthesis, 1997, 4, 373-386.	1.5	216
2	Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Applied Physics Letters, 2004, 85, 5081-5083.	3.3	206
3	Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 2006, 128, 6626-6635.	13.7	194
4	Cycloadditions under Microwave Irradiation Conditions: Methods and Applications. European Journal of Organic Chemistry, 2000, 2000, 3659-3673.	2.4	160
5	Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chemical Communications, 2004, , 1734-1735.	4.1	149
6	Geminate Charge Recombination in Polymer/Fullerene Bulk Heterojunction Films and Implications for Solar Cell Function. Journal of the American Chemical Society, 2010, 132, 12440-12451.	13.7	130
7	Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube. Journal of Physical Chemistry B, 2004, 108, 12691-12697.	2.6	117
8	Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moietyElectronic supplementary information (ESI) available: synthetic procedures and full characterization of all new compounds. See http://www.rsc.org/suppdata/jm/b2/b200432a/. Journal of Materials Chemistry, 2002, 12, 2077-2087.	6.7	91
9	Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices. Synthetic Metals, 2005, 154, 53-56.	3.9	90
10	Modification of Regioselectivity in Cycloadditions to C70under Microwave Irradiation. Journal of Organic Chemistry, 2000, 65, 2499-2507.	3.2	84
11	Silica gel catalysed Knoevenagel condensation in dry media under microwave irradiation. Tetrahedron Letters, 1996, 37, 1113-1116.	1.4	77
12	Efficient tautomerization hydrazone-azomethine imine under microwave irradiation. Synthesis of [4,3′] and [5,3′]bipyrazoles. Tetrahedron, 1998, 54, 13167-13180.	1.9	75
13	Cycloadditions to [60]fullerene using microwave irradiation: A convenient and expeditious procedure. Tetrahedron, 1997, 53, 2599-2608.	1.9	73
14	Microwave Assisted Beckmann Rearrangement of Ketoximes in Dry Media. Synlett, 1995, 1995, 1259-1260.	1.8	72
15	Thermal and Microwave-Assisted Synthesis of Dielsâ ``Alder Adducts of [60]Fullerene with 2,3-Pyrazinoquinodimethanes:Â Characterization and Electrochemical Properties. Journal of Organic Chemistry, 1997, 62, 3705-3710.	3.2	62
16	Synthesis and Properties of Isoxazolo[60]fullereneâ^'Donor Dyadsâ€. Journal of Organic Chemistry, 2000, 65, 8675-8684.	3.2	62
17	C60-Based Triads with Improved Electron-Acceptor Properties: Pyrazolylpyrazolino[60]fullerenesâ€. Journal of Organic Chemistry, 2001, 66, 5033-5041.	3.2	60
18	The first synthesis of a conjugated hybrid of C60–fullerene and a single-wall carbon nanotube. Carbon, 2007, 45, 2250-2252.	10.3	60

#	Article	IF	CITATIONS
19	Microwave irradiation in solvent-free conditions: an eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chemistry, 2000, 2, 165-172.	9.0	59
20	Nanoscale Interaction Between CdSe or CdTe Nanocrystals and Molecular Dyes Fostering or Hindering Directional Charge Separation. Small, 2010, 6, 221-225.	10.0	59
21	Low Open-Circuit Voltage Loss in Solution-Processed Small-Molecule Organic Solar Cells. ACS Energy Letters, 2016, 1, 302-308.	17.4	59
22	Pyrazolinofullerenes: a less known type of highly versatile fullerene derivatives. Chemical Society Reviews, 2011, 40, 5232.	38.1	57
23	Synthesis, electrochemistry and photophysical properties of phenylenevinylene fullerodendrimers. Tetrahedron Letters, 2001, 42, 3435-3438.	1.4	56
24	Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 μm. Thin Solid Films, 2006, 511-512, 576-580.	1.8	56
25	Solvent-free phase transfer catalysis under microwaves in fullerene chemistry. A convenient preparation of N-alkylpyrrolidino[60]fullerenes. Tetrahedron Letters, 1998, 39, 6053-6056.	1.4	55
26	Carbon Nanohorns as a Scaffold for the Construction of Disposable Electrochemical Immunosensing Platforms. Application to the Determination of Fibrinogen in Human Plasma and Urine. Analytical Chemistry, 2014, 86, 7749-7756.	6.5	53
27	Synthesis of new C60î—,donor dyads by reaction of pyrazolylhydrazones with [60]fullerene under microwave irradiation. Tetrahedron Letters, 1999, 40, 1587-1590.	1.4	52
28	Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 2004, 386, 342-345.	2.6	51
29	Dendritic liquid-crystalline fullerene–ferrocene dyads. Tetrahedron, 2006, 62, 2115-2122.	1.9	50
30	Liquid-Crystalline [60]Fullerene-TTF Dyads. Organic Letters, 2005, 7, 383-386.	4.6	49
31	Comparative study on the photovoltaic characteristics of A–D–A and D–A–D molecules based on Zn-porphyrin; a D–A–D molecule with over 8.0% efficiency. Journal of Materials Chemistry A, 2017, 5, 1057-1065.	10.3	49
32	A non-fullerene all small molecule solar cell constructed with a diketopyrrolopyrrole-based acceptor having a power conversion efficiency higher than 9% and an energy loss of 0.54 eV. Journal of Materials Chemistry A, 2018, 6, 11714-11724.	10.3	49
33	The Isoindazole Nucleus as a Donor in Fullerene-Based Dyads. Evidence for Electron Transfer. Journal of Organic Chemistry, 2004, 69, 2661-2668.	3.2	48
34	Synthesis and properties of pyrazolino[60]fullerene-donor systems. Tetrahedron, 2002, 58, 5821-5826.	1.9	47
35	Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosensors and Bioelectronics, 2015, 74, 24-29.	10.1	47
36	On the Thermal Stability of [60]Fullerene Cycloadducts:  Retro-Cycloaddition Reaction of 2-Pyrazolino[4,5:1,2][60]fullerenes. Journal of Organic Chemistry, 2008, 73, 3184-3188.	3.2	46

#	Article	IF	CITATIONS
37	Electroactive 3′-(N-phenylpyrazolyl)isoxazoline[4′,5′:1,2][60]fullerene dyads. Tetrahedron Letters, 1999, 40, 4889-4892.	1.4	45
38	Pyrazolino[60]fullerene-Oligophenylenevinylene Dumbbell-Shaped Arrays: Synthesis, Electrochemistry, Photophysics, and Self-Assembly on Surfaces. Chemistry - A European Journal, 2005, 11, 4405-4415.	3.3	45
39	A Carbon NanohornPorphyrin Supramolecular Assembly for Photoinduced Electronâ€Transfer Processes. Chemistry - A European Journal, 2010, 16, 10752-10763.	3.3	45
40	Role of the Bridge in Photoinduced Electron Transfer in Porphyrin–Fullerene Dyads. Chemistry - A European Journal, 2015, 21, 5814-5825.	3.3	45
41	Stoichiometry dependence of charge transport in polymer/methanofullerene and polymer/C70 derivative based solar cells. Organic Electronics, 2006, 7, 195-204.	2.6	44
42	Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes. Nanoscale, 2012, 4, 4370.	5.6	44
43	Efficient Polymer Solar Cells with High Open-Circuit Voltage Containing Diketopyrrolopyrrole-Based Non-Fullerene Acceptor Core End-Capped with Rhodanine Units. ACS Applied Materials & Interfaces, 2017, 9, 11739-11748.	8.0	43
44	Microwave Irradiation: An Important Tool to Functionalize Fullerenes and Carbon Nanotubes. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 766-782.	1.1	40
45	High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and C60 connected systems. Chemical Communications, 2007, , 4498.	4.1	40
46	Cycloaddition of benzyne to SWCNT: towards CNT-based paddle wheels. Chemical Communications, 2010, 46, 7028.	4.1	40
47	CuSCN as selective contact in solution-processed small-molecule organic solar cells leads to over 7% efficient porphyrin-based device. Journal of Materials Chemistry A, 2016, 4, 11009-11022.	10.3	39
48	Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Advances, 2016, 6, 49543-49550.	3.6	36
49	Bandgap Modulation in Efficient <i>n</i> â€Thiophene Absorbers for Dye Solar Cell Sensitization. ChemPhysChem, 2010, 11, 245-250.	2.1	35
50	Charge stabilizing tris(triphenylamine)-zinc porphyrin–carbon nanotube hybrids: synthesis, characterization and excited state charge transfer studies. Nanoscale, 2017, 9, 7551-7558.	5.6	35
51	Synthesis of dumbbell-shaped bis-(pyrazolino[60]fullerene)-oligophenylenevinylene derivatives. Tetrahedron Letters, 2002, 43, 7507-7511.	1.4	34
52	(4 + 2) and (2 + 2) Cycloadditions of Benzyne to C ₆₀ and Zig-Zag Single-Walled Carbon Nanotubes: The Effect of the Curvature. Journal of Physical Chemistry C, 2016, 120, 1716-1726.	3.1	34
53	Tuning the optoelectronic properties for high-efficiency (>7.5%) all small molecule and fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 14259-14269.	10.3	34
54	Electron Transfer in Nonpolar Solvents in Fullerodendrimers with Peripheral Ferrocene Units. Chemistry - A European Journal, 2006, 12, 5149-5157.	3.3	33

#	Article	IF	CITATIONS
55	Synthesis and Photoinduced Intramolecular Processes of Fulleropyrrolidine–Oligothienylenevinylene–Ferrocene Triads. Chemistry - A European Journal, 2007, 13, 3924-3933.	3.3	33
56	Triplication of the Photocurrent in Dye Solar Cells by Increasing the Elongation of the π onjugation in Znâ€Porphyrin Sensitizers. ChemPhysChem, 2011, 12, 961-965.	2.1	33
57	Delocalization-to-Localization Charge Transition in Diferrocenyl-Oligothienylene-Vinylene Molecular Wires as a Function of the Size by Raman Spectroscopy. Journal of the American Chemical Society, 2012, 134, 5675-5681.	13.7	33
58	High open circuit voltage in efficient thiophene-based small molecule solution processed organic solar cells. Organic Electronics, 2013, 14, 2826-2832.	2.6	33
59	Diels-Alder cycloaddition of vinylpyrazoles. Synergy between microwave irradiation and solvent-free conditions. Tetrahedron, 1996, 52, 9237-9248.	1.9	32
60	New acceptor–Ĩ€-porphyrin–Ĩ€-acceptor systems for solution-processed small molecule organic solar cells. Dyes and Pigments, 2015, 121, 109-117.	3.7	32
61	Facial Selectivity in Cycloadditions of a Chiral Ketene Acetal under Microwave Irradiation in Solvent-Free Conditions. Configurational Assignment of the Cycloadducts by NOESY Experiments and Molecular Mechanics Calculations. Journal of Organic Chemistry, 1995, 60, 4160-4166.	3.2	30
62	Increase in efficiency on using selenophene instead of thiophene in π-bridges for D-π-DPP-π-D organic solar cells. Journal of Materials Chemistry A, 2019, 7, 11886-11894.	10.3	29
63	Panchromatic Push–Pull Chromophores based on Triphenylamine as Donors for Molecular Solar Cells. Organic Letters, 2011, 13, 5362-5365.	4.6	28
64	Viologen-functionalized single-walled carbon nanotubes as carrier nanotags for electrochemical immunosensing. Application to TGF-β1 cytokine. Biosensors and Bioelectronics, 2017, 98, 240-247.	10.1	28
65	Photoinduced electron transfer of zinc porphyrin–oligo(thienylenevinylene)–fullerene[60] triads; thienylenevinylenes as efficient molecular wires. Physical Chemistry Chemical Physics, 2014, 16, 2443-2451.	2.8	27
66	Near-IR Absorbing D–A–D Zn-Porphyrin-Based Small-Molecule Donors for Organic Solar Cells with Low-Voltage Loss. ACS Applied Materials & Interfaces, 2019, 11, 7216-7225.	8.0	27
67	Efficient cycloaddition of arynes to carbon nanotubes under microwave irradiation. Carbon, 2013, 63, 140-148.	10.3	26
68	Operative Mechanism of Hole-Assisted Negative Charge Motion in Ground States of Radical-Anion Molecular Wires. Journal of the American Chemical Society, 2017, 139, 686-692.	13.7	25
69	A soluble hybrid material combining carbon nanohorns and C60. Chemical Communications, 2011, 47, 12771.	4.1	24
70	Efficiency improvement using bis(trifluoromethane) sulfonamide lithium salt as a chemical additive in porphyrin based organic solar cells. Nanoscale, 2016, 8, 17953-17962.	5.6	23
71	Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 2008, 18, 1592.	6.7	22
72	Effect of porphyrin loading on performance of dye sensitized solar cells based on iodide/tri-iodide and cobalt electrolytes. Journal of Materials Chemistry A, 2013, 1, 13640.	10.3	22

#	Article	IF	CITATIONS
73	Photoinduced electron transfer in a carbon nanohorn–C60 conjugate. Chemical Science, 2014, 5, 2072.	7.4	21
74	Ternary Organic Solar Cell with a Nearâ€Infrared Absorbing Selenophene–Diketopyrrolopyrroleâ€Based Nonfullerene Acceptor and an Efficiency above 10%. Solar Rrl, 2020, 4, 1900471.	5.8	21
75	The importance of the linking bridge in donor–C60 electroactive dyads. New Journal of Chemistry, 2002, 26, 76-80.	2.8	20
76	Ruthenocene as a new donor fragment in [60]fullerene–donor dyads. Tetrahedron Letters, 2005, 46, 4781-4784.	1.4	20
77	Carbon nanotubes and porphyrins: an exciting combination for optoelectronic devices. Journal of Porphyrins and Phthalocyanines, 2007, 11, 348-358.	0.8	20
78	Oxidation of 3-Alkyl-Substituted 2-Pyrazolino[60]fullerenes: A New Formyl-Containing Building Block for Fullerene Chemistry. Organic Letters, 2008, 10, 3705-3708.	4.6	20
79	Injection and Recombination in Dye-Sensitized Solar Cells with a Broadband Absorbance Metal-Free Sensitizer Based on Oligothienylvinylene. Journal of Physical Chemistry C, 2008, 112, 18623-18627.	3.1	20
80	Photoinduced Energy and Electron Transfer in Phenylethynylâ€Bridged Zinc Porphyrin–Oligothienylenevinylene–C ₆₀ Ensembles. Chemistry - A European Journal, 2012, 18, 7473-7485.	3.3	20
81	Reduced Energy Offsets and Low Energy Losses Lead to Efficient (â^1⁄410% at 1 sun) Ternary Organic Solar Cells. ACS Energy Letters, 2018, 3, 2418-2424.	17.4	20
82	Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11, 14978-14992.	5.6	20
83	Syntheses, electrochemistry and molecular modeling of N,N′-dicyanoquinonediimine (DCNQI) derivatives of substituted 1,4-anthracenediones: precursors for organic metals Tetrahedron, 1993, 49, 4881-4892.	1.9	19
84	Synthesis and Photophysical Properties of a Pyrazolino[60]fullerene with Dimethylaniline Connected by an Acetylene Linkage. European Journal of Organic Chemistry, 2006, 2006, 2344-2351.	2.4	19
85	Ferrocenylâ€Ended Thieno–Vinylene Oligomers: Donor–Acceptor Polarization and Mixedâ€Valence Properties with Emphasis on the Raman Mapping of Localizedâ€ŧoâ€Delocalized Transitions. Chemistry - A European Journal, 2009, 15, 2548-2559.	3.3	19
86	New cyclopentadithiophene (CDT) linked porphyrin donors with different end-capping acceptors for efficient small molecule organic solar cells. Journal of Materials Chemistry C, 2017, 5, 4742-4751.	5.5	19
87	Ni-Porphyrin-based small molecule for efficient organic solar cells (>9.0%) with a high open circuit voltage of over 1.0 V and low energy loss. Chemical Communications, 2018, 54, 14144-14147.	4.1	19
88	Extension of the aza-di-Ï€-methane reaction to stable derivatives. Photochemical cyclization of β,γ-unsaturated oxime acetates. Journal of the Chemical Society Perkin Transactions 1, 1991, , 223-228.	0.9	18
89	A ready access to unprecedented N-anilinopyrazolino[60]fullerenes. Tetrahedron Letters, 2004, 45, 1651-1654.	1.4	18
90	Pyrazolino [60]fullerenes: synthesis andÂproperties. Comptes Rendus Chimie, 2006, 9, 1058-1074.	0.5	18

#	Article	IF	CITATIONS
91	Comparison between the Photophysical Properties of Pyrazolo- and Isoxazolo[60]fullerenes with Dual Donors (Ferrocene, Aniline and Alkoxyphenyl). European Journal of Organic Chemistry, 2007, 2007, 2175-2185.	2.4	18
92	Ultrafast electron transfer in all-carbon-based SWCNT–C ₆₀ donor–acceptor nanoensembles connected by poly(phenylene–ethynylene) spacers. Nanoscale, 2016, 8, 14716-14724.	5.6	18
93	Charge recombination losses in thiophene-substituted porphyrin dye-sensitized solar cells. Dyes and Pigments, 2016, 126, 147-153.	3.7	18
94	Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids. Nanoscale, 2018, 10, 5205-5213.	5.6	18
95	Panchromatic ternary organic solar cells with 9.44% efficiency incorporating porphyrin-based donors. Nanoscale, 2018, 10, 12100-12108.	5.6	18
96	Highly Efficient (15.08%) All-Small-Molecule Ternary Solar Cells Constructed with a Porphyrin as a Donor and Two Acceptors. ACS Applied Energy Materials, 2021, 4, 4498-4506.	5.1	18
97	The Aza-di-ï€-methane rearrangement of O-acetyl 2,2-dimethyl-4,4-diphenylbut-3-enal oxime. Journal of the Chemical Society Chemical Communications, 1987, .	2.0	17
98	Studies on the scope of the aza-di-π-methane rearrangement of β,γ-unsaturated imines. Journal of the Chemical Society Perkin Transactions 1, 1987, , 743-746.	0.9	17
99	Peripheral versus axial substituted phthalocyanine-double-walled carbon nanotube hybrids as light harvesting systems. Journal of Materials Chemistry C, 2015, 3, 10215-10224.	5.5	17
100	A ternary organic solar cell with 15.6% efficiency containing a new DPP-based acceptor. Journal of Materials Chemistry C, 2021, 9, 16272-16281.	5.5	17
101	Fullerene/Non-fullerene Alloy for High-Performance All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6461-6469.	8.0	17
102	[60]Fullerene-based liquid crystals acting as acid-sensitive fluorescent probes. Chemical Communications, 2008, , 4590.	4.1	16
103	Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides. Journal of Materials Chemistry C, 2015, 3, 4960-4969.	5.5	16
104	Modulation of the exfoliated graphene work function through cycloaddition of nitrile imines. Physical Chemistry Chemical Physics, 2016, 18, 29582-29590.	2.8	16
105	Oligomers of cyclopentadithiophene-vinylene in aromatic and quinoidal versions and redox species with intermediate forms. Chemical Science, 2017, 8, 8106-8114.	7.4	16
106	Synthesis and Photoinduced Intermolecular Electronic Acceptor Ability of Pyrazolo[60]fullerenes vs Tetrathiafulvalene. Bulletin of the Chemical Society of Japan, 2005, 78, 1500-1507.	3.2	15
107	High photocurrent in oligo-thienylenevinylene-based small molecule solar cells with 4.9% solar-to-electrical energy conversion. Journal of Materials Chemistry A, 2015, 3, 11340-11348.	10.3	15
108	Low Energy Loss of 0.57 eV and High Efficiency of 8.80% in Porphyrin-Based BHJ Solar Cells. ACS Applied Energy Materials, 2018, 1, 1304-1315.	5.1	15

#	Article	IF	CITATIONS
109	The influence of the terminal acceptor and oligomer length on the photovoltaic properties of A–D–A small molecule donors. Journal of Materials Chemistry C, 2020, 8, 4763-4770.	5.5	15
110	N-Arylation of Pyrrolidino[3′,4′:1,2][60]fullerene: Synthesis under Solvent-Free Conditions and Electrochemistry of New C60–Acceptor Dyads. European Journal of Organic Chemistry, 1999, 1999, 3433-3436.	2.4	14
111	Mass Spectrometry Studies of the Retro-Cycloaddition Reaction of Pyrrolidino and 2-Pyrazolinofullerene Derivatives Under Negative ESI Conditions. Journal of the American Society for Mass Spectrometry, 2011, 22, 557-567.	2.8	14
112	Efficient Photoinduced Energy and Electron Transfer in Zn ^{II} –Porphyrin/Fullerene Dyads with Interchromophoric Distances up to 2.6â€nm and No Wireâ€like Connectivity. Chemistry - A European Journal, 2017, 23, 14200-14212.	3.3	14
113	Substitution effects on the aza-di-ï€-methane rearrangement of imines. Journal of the Chemical Society Perkin Transactions II, 1987, , 1039-1042.	0.9	13
114	Synthesis and photophysical properties of a [60]fullerene compound with dimethylaniline and ferrocene connected through a pyrazolino group: a study by laser flash photolysis. Physical Chemistry Chemical Physics, 2006, 8, 4104-4111.	2.8	13
115	Through-space communication in a TTF–C60–TTF triad. New Journal of Chemistry, 2007, 31, 230-236.	2.8	13
116	Robust Ethylenedioxythiophene–Vinylene Oligomers from Fragile Thiophene–Vinylene Cores: Synthesis and Optical, Chemical and Electrochemical Properties of Multicharged Shapes. Chemistry - A European Journal, 2015, 21, 1713-1725.	3.3	13
117	High photo-current in solution processed organic solar cells based on a porphyrin core A-ï€-D-ï€-A as electron donor material. Organic Electronics, 2016, 38, 330-336.	2.6	13
118	Ternary All‧mallâ€Molecule Solar Cells with Two Smallâ€Molecule Donors and Y6 Nonfullerene Acceptor with a Power Conversion Efficiency over Above 14% Processed from a Nonhalogenated Solvent. Solar Rrl, 2020, 4, 2000460.	5.8	13
119	Influence of the dipole moment on the photovoltaic performance of polymer solar cells employing non-fullerene small molecule acceptor. Solar Energy, 2021, 221, 393-401.	6.1	13
120	A Facile Formation of Electroactive Fullerene Adducts from Sultines via a Diels-Alder Reaction Tetrahedron Letters, 1995, 36, 8307-8310.	1.4	13
121	Noncovalent Conformational Locks Enabling Efficient Nonfullerene Acceptors. Solar Rrl, 2022, 6, 2100768.	5.8	13
122	The aza-di-Ï€-methane rearrangement of 1-aryl-4,4-dimethyl-6,6-diphenyl-2-azahexa-2,5-dienes. The influence of substituents on the N-benzyl group. Journal of the Chemical Society Perkin Transactions II, 1989, , 903-906.	0.9	12
123	Electron Transfer Dynamics in Dye‣ensitized Solar Cells Utilizing Oligothienylvinylene Derivates as Organic Sensitizers. ChemSusChem, 2009, 2, 344-349.	6.8	12
124	Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe. Electrochimica Acta, 2011, 56, 5566-5574.	5.2	12
125	Organic Dyes Incorporating Oligothienylenevinylene for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 5732-5735.	4.6	12
126	N-Doped graphene/C60 covalent hybrid as a new material for energy harvesting applications. Chemical Science, 2018, 9, 8221-8227.	7.4	12

#	Article	IF	CITATIONS
127	Optical properties and photoinduced processes in multicomponent architectures with oligophenylenevinylene units. Synthetic Metals, 2004, 147, 19-28.	3.9	11
128	Synthesis and photophysical properties of ruthenocene-[60]fullerene dyads. New Journal of Chemistry, 2006, 30, 93-101.	2.8	11
129	Photophysical Properties of the Newly Synthesized Triad Based on [70]Fullerene Studies with Laser Flash Photolysis. Journal of Physical Chemistry B, 2007, 111, 4335-4341.	2.6	11
130	Photochemical Evidence of Electronic Interwall Communication in Doubleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2012, 18, 16922-16930.	3.3	11
131	Doubleâ€Wall Carbon Nanotube–Porphyrin Supramolecular Hybrid: Synthesis and Photophysical Studies. ChemPhysChem, 2014, 15, 100-108.	2.1	11
132	Regioselectivity of the Pauson–Khand reaction in single-walled carbon nanotubes. Nanoscale, 2018, 10, 15078-15089.	5.6	11
133	Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 11708-11717.	8.0	11
134	Determination ofsyn/anti Isomerism in DCNQI Derivatives by 2D Exchange Spectroscopy: Theoretical Underpinning. European Journal of Organic Chemistry, 2000, 2000, 2407-2415.	2.4	10
135	Relation between charge transfer and solvent polarity in fullerene derivatives: NMR studiesElectronic supplementary information (ESI) available: Table S1: chemical shifts (ppm) in C6D6 (ETN = 0.111), CDCl3 (ETN = 0.259), and CD2Cl2 (ETN = 0.309). See http://www.rsc.org/suppdata/im/b2/b203112b/. Journal of Materials Chemistry. 2002. 12. 2130-2136.	6.7	10
136	Triplet photosensitizer-nanotube conjugates: synthesis, characterization and photochemistry of charge stabilizing, palladium porphyrin/carbon nanotube conjugates. Nanoscale, 2020, 12, 9890-9898.	5.6	10
137	Synthesis and Photoinduced Energy―and Electronâ€Transfer Processes of C ₆₀ –Oligothienylenevinylene–C ₇₀ Dumbbell Compounds. Chemistry - A European Journal, 2011, 17, 5432-5444.	3.3	9
138	Cycloaddition of Nitrile Oxides to Graphene: a Theoretical and Experimental Approach. Chemistry - A European Journal, 2019, 25, 14644-14650.	3.3	9
139	Photophysics, electrochemistry and structure of a pyrazolino[60]fullerene dendrimer in solid molecular films. Synthetic Metals, 2005, 148, 47-52.	3.9	8
140	Effect of the bridge substitution on the efficiency of dye-sensitized solar cells. Tetrahedron Letters, 2012, 53, 6665-6669.	1.4	8
141	Push–pull triphenylamine based chromophores as photosensitizers and electron donors for molecular solar cells. Tetrahedron, 2013, 69, 6875-6883.	1.9	8
142	Use of Thienylenevinylene and Ethynyl Molecular Bridges in Organic Dyes for Dyeâ€ S ensitized Solar Cells: Implications for Device Performance. ChemElectroChem, 2014, 1, 1126-1129.	3.4	8
143	Synthesis, characterization and photoinduced charge separation of carbon nanohorn–oligothienylenevinylene hybrids. Physical Chemistry Chemical Physics, 2016, 18, 1828-1837.	2.8	8
144	Cyclopentadithiophene organic core in small molecule organic solar cells: morphological control of carrier recombination. Physical Chemistry Chemical Physics, 2017, 19, 3640-3648.	2.8	8

#	Article	IF	CITATIONS
145	Highly efficient ternary polymer solar cell with two non-fullerene acceptors. Solar Energy, 2020, 199, 530-537.	6.1	8
146	Modulating charge carrier density and mobility in doped graphene by covalent functionalization. Chemical Communications, 2019, 55, 9999-10002.	4.1	7
147	Microwaves in Cycloadditions. , 0, , 295-343.		6
148	Heck reaction on fullerene derivatives. Tetrahedron Letters, 2008, 49, 3656-3658.	1.4	6
149	Photoinduced Electron Transfer in Branched Bis(ferrocenylacetylene)â€C ₆₀ Systems: Influence of the Nature of Conjugation. European Journal of Organic Chemistry, 2008, 2008, 3535-3543.	2.4	6
150	Cyclopentadithiophene-based co-oligomers for solution-processed organic solar cells. Dyes and Pigments, 2017, 143, 112-122.	3.7	6
151	Self-Assembly-Directed Organization of a Fullerene–Bisporphyrin into Supramolecular Giant Donut Structures for Excited-State Charge Stabilization. Journal of the American Chemical Society, 2021, 143, 11199-11208.	13.7	6
152	A star-shaped sensitizer based on thienylenevinylene for dye-sensitized solar cells. Tetrahedron Letters, 2013, 54, 431-435.	1.4	5
153	Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. ChemSusChem, 2021, 14, 3494-3501.	6.8	5
154	Molecular dynamics of solutions of poly-3-octyl-thiophene and functionalized single wall carbon nanotubes studied by neutron scattering. Chemical Physics, 2013, 427, 129-141.	1.9	4
155	Oligothienylenevinylene Polarons and Bipolarons Confined between Electronâ€Accepting Perchlorotriphenylmethyl Radicals. Chemistry - A European Journal, 2018, 24, 3776-3783.	3.3	4
156	Occurrence of excited state charge separation in a N-doped graphene–perylenediimide hybrid formed <i>via</i> â€~click' chemistry. Nanoscale Advances, 2019, 1, 4009-4015.	4.6	4
157	Panchromatic Triple Organic Semiconductor Heterojunctions for Efficient Solar Cells. ACS Applied Energy Materials, 2020, 3, 12506-12516.	5.1	4
158	Synthesis and electronic properties of pyridine end-capped cyclopentadithiophene-vinylene oligomers. RSC Advances, 2020, 10, 41264-41271.	3.6	4
159	Enhanced electronic communication through a conjugated bridge in a porphyrin–fullerene donor–acceptor couple. Journal of Materials Chemistry C, 2021, 9, 10889-10898.	5.5	3
160	Formation and Photoinduced Electron Transfer in Porphyrin―and Phthalocyanineâ€Bearing Nâ€Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry - A European Journal, 2022, , .	3.3	3
161	Intramolecular electron transfer in the novel photoreaction of some β,γ-unsaturated oxime–boron trifluoride complexes. A new synthetic path to dihydroisoxazoles. Journal of the Chemical Society Chemical Communications, 1990, , 123-125.	2.0	2
162	Free-base porphyrin and [60]fullerene linked by oligomeric ethylenedioxythienylenevinylene bridge. Journal of Porphyrins and Phthalocyanines, 2015, 19, 404-410.	0.8	2

#	Article	IF	CITATIONS
163	Heteroleptic Ru(ii)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 11901-11908.	2.8	2
164	Sc3N@Ih-C80 based donor–acceptor conjugate: role of thiophene spacer in promoting ultrafast excited state charge separation. RSC Advances, 2020, 10, 19861-19866.	3.6	2
165	Vibrational spectra of oligothienyl-vinylenes with donor-ï€-donor and donor-ï€-acceptor substitution patterns. Journal of Molecular Structure, 2007, 834-836, 374-379.	3.6	1
166	Regioselective preparation of a bis-pyrazolinofullerene by a macrocyclization reaction. Chemical Communications, 2016, 52, 13205-13208.	4.1	1
167	[All]â€ <i>S</i> , <i>S</i> â€dioxide Oligoâ€Thienylenevinylenes: Synthesis and Structural/Electronic Shapes from Their Molecular Force Fields. Chemistry - A European Journal, 2019, 25, 464-468.	3.3	1
168	Synthesis of Dumbbell-Shaped Bis-(pyrazolino[60]fullerene)-oligophenylenevinylene Derivatives ChemInform, 2003, 34, no.	0.0	0
169	A Ready Access to Unprecedented N-Anilinopyrazolino[60]fullerenes. ChemInform, 2004, 35, no.	0.0	0
170	The Isoindazole Nucleus as a Donor in Fullerene-Based Dyads. Evidence for Electron Transfer ChemInform, 2004, 35, no.	0.0	0
171	Liquid-Crystalline [60]Fullerene-TTF Dyads ChemInform, 2005, 36, no.	0.0	0
172	Synthesis and Photoinduced Intermolecular Electronic Acceptor Ability of Pyrazolo[60]fullerenes vs. Tetrathiafulvalene ChemInform, 2005, 36, no.	0.0	0
173	Synthesis and Properties of bis(ferrocenylacetylene)-C60 Systems ECS Meeting Abstracts, 2008, , .	0.0	0
174	<i>meso</i> -Ethynyl-extended push–pull type porphyrins for near-infrared organic photodetectors. Journal of Materials Chemistry C, 0, , .	5.5	0