
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6077313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application. Symmetry, 2021, 13, 889.	2.2	24
2	The absolute configuration of 2-bromo-2,3-dihydro-1 <i>H</i> -inden-1-ols. Synthetic Communications, 2021, 51, 3023-3031.	2.1	1
3	Asymmetric synthesis of (<i>S,R</i>)- and (<i>R,R</i>)-methiin stereoisomers. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 713-717.	1.6	2
4	Asymmetric Electrophilic Reactions in Phosphorus Chemistry. Symmetry, 2020, 12, 108.	2.2	13
5	Stereochemistry of electrophilic and nucleophilic substitutions at phosphorus. Pure and Applied Chemistry, 2019, 91, 43-57.	1.9	9
6	Stereochemistry of electrophilic and nucleophilic substitution at phosphorus. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 396-400.	1.6	5
7	Stereoselective syntheses of sanshool derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 275-276.	1.6	5
8	Stereochemistry of nucleophilic substitution at trivalent phosphorus. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 621-633.	1.6	7
9	Nucleophilic substitution at phosphorus: stereochemistry and mechanisms. Tetrahedron: Asymmetry, 2017, 28, 1651-1674.	1.8	51
10	Synthesis, Properties and Stereochemistry of 2-Halo-1,2λ5-oxaphosphetanes. Molecules, 2016, 21, 1371.	3.8	6
11	Reaction of C-silyl-P-chloro-alkylidenephosphoranes with carbonyl compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 322-328.	1.6	0
12	Multiple stereoselectivity in organophosphorus chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 444-458.	1.6	8
13	Synthesis and Properties of Four-Membered Phosphorus Heterocycles-2-Fluoro-1,2λ ⁵ -Oxaphosphetanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 2232-2245.	1.6	5
14	Synthesis of <i>Anti-Cis-</i> Phosphiranes. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1192-1200.	1.6	2
15	Recent Advances in Asymmetric Synthesis of Ð-Stereogenic Phosphorus Compounds. Topics in Current Chemistry, 2014, 360, 161-236.	4.0	34
16	Asymmetric catalysis as a method for the synthesis of chiral organophosphorus compounds. Tetrahedron: Asymmetry, 2014, 25, 865-922.	1.8	68
17	Advances in Asymmetric Hydrogenation and Hydride Reduction of Organophosphorus Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1102-1131.	1.6	10
18	Enzymatic preparation of (1S,2R)- and (1R,2S)-stereoisomers of 2-halocycloalkanols. Tetrahedron: Asymmetry, 2013, 24, 37-42.	1.8	16

#	Article	IF	CITATIONS
19	New Catalyst for Phosphonylation of CËX Electrophiles. Synthetic Communications, 2012, 42, 1637-1649.	2.1	14
20	Recent developments in the asymmetric synthesis of Ð-chiral phosphorus compounds. Tetrahedron: Asymmetry, 2012, 23, 1-46.	1.8	146
21	Synthesis of 3,3-Bis(diethylphosphono)-1-(3 <i>H</i>)-isobenzofuranone and Its Chemical Properties. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 481-488.	1.6	5
22	Highly Effective Catalyst for the Reaction of Trialkylphosphites with CËX Electrophiles. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 796-798.	1.6	3
23	Enzymatic synthesis of organophosphorus compounds. Russian Chemical Reviews, 2011, 80, 883-910.	6.5	20
24	Synthesis and Evaluation of 1-Aryl-1-(7-carboxy-isoindolin-1-one-2-yl)methylphosphonic Acid Derivatives as Inhibitors of Protein Tyrosine Phosphatase. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 956-957.	1.6	0
25	New Methods for the Synthesis of Phosphonic Analogues of Natural Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 644-651.	1.6	4
26	Synthesis of the Phosphonoanalogue of Benzo[c]pyroglutamic Acid. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 2441-2448.	1.6	7
27	Synthesis of Phosphonoindoprofen. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 2238-2242.	1.6	4
28	Synthesis of Phosphonic Acids Possessing Isoindolin-1-one Moiety: Unexpected Acid-Catalyzed C-P-Bond Cleavage. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 890-907.	1.6	30
29	Synthesis of optically active hydroxyphosphonates. Heteroatom Chemistry, 2008, 19, 133-139.	0.7	23
30	Stereoselectivity of binding of α-(N-benzylamino)benzylphosphonic acids to prostatic acid phosphatase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4620-4623.	2.2	28
31	Asymmetric Syntheses of New Phosphonotaxoids. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 677-678.	1.6	5
32	New Method for the Asymmetric Reduction of Ketophosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 687-688.	1.6	6
33	Modified Alkaloids as Organocatalysts for the Asymmetric Synthesis of Organophosphorus Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 728-729.	1.6	3
34	Dimenthyl(S)-2-Hydroxy-3-Chloropropylphosphonate—Accessible Chiron for the Asymmetric Synthesis of Hydroxyphosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 681-682.	1.6	5
35	Di(1R,2S,5R)-menthyl 2-Hydroxy-3-chloropropylphosphonate as a Useful Chiral Synthon for the Preparation of Enantiomerically Pure Phosphonic Acids. Synlett, 2007, 2007, 2400-2404.	1.8	3
36	α-Acylaminophosphonates possessing epoxyisoindolone moiety. Tetrahedron, 2007, 63, 12576-12582.	1.9	15

#	Article	IF	CITATIONS
37	Chiral hydroxy phosphonates: synthesis, configuration and biological properties. Russian Chemical Reviews, 2006, 75, 227-253.	6.5	86
38	New method for the asymmetric hydroboration of ketophosphonates and the synthesis of phospho-carnitine. Tetrahedron: Asymmetry, 2006, 17, 1023-1026.	1.8	24
39	Asymmetric synthesis of hydroxyphosphonates. Tetrahedron: Asymmetry, 2005, 16, 3295-3340.	1.8	215
40	Diasteroselective Addition of Monoand Bis-Silylphosphines to Chiral Aldehydes. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 2335-2346.	1.6	7
41	STEREOSELECTIVE REACTIONS OF CHIRAL AMINES WITH RACEMIC CHLOROPHOSPHINES. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 1027-1046.	1.6	35
42	Double and triple asymmetric induction in phosphaaldol reactions. Tetrahedron: Asymmetry, 2004, 15, 1961-1963.	1.8	15
43	Highly stereoselective addition of silylphosphines to chiral aldehydes. Tetrahedron Letters, 2004, 45, 6955-6957.	1.4	26
44	Multiple stereoselectivity and its application in organic synthesis. Tetrahedron, 2003, 59, 5953-6018.	1.9	111
45	Asymmetric synthesis of chiral N-(1-methylbenzyl)aminophosphines. Tetrahedron: Asymmetry, 2003, 14, 181-183.	1.8	50
46	Double Asymmetric Induction as Method for the Synthesis of Chiral Organophosphorus Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2111-2114.	1.6	10
47	Double Asymmetric Induction During Addition of Chiral Phosphites to C=N Bond. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2269-2270.	1.6	11
48	Chiral Symmetric Alkylamides of Phosphoric and Phosphonic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2109-2110.	1.6	3
49	Synthesis and Properties of Phosphorus Ylides Containing Fluorine Atoms Bonded to Phosphorus. Synlett, 2001, 2001, 1065-1078.	1.8	22
50	ORGANOELEMENT JUVENILE HORMONE MIMETICS. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 163, 171-183.	1.6	0
51	C3-symmetric trialkyl phosphites as starting compounds of asymmetric synthesis. Heteroatom Chemistry, 2000, 11, 138-143.	0.7	39
52	Application of the dimenthyl chlorophosphite for the chiral analysis of amines, amino acids and peptides. Tetrahedron: Asymmetry, 1999, 10, 1729-1732.	1.8	28
53	Chlorotropy in the phosphorus-carbon diad. Heteroatom Chemistry, 1998, 9, 219-228.	0.7	4
54	New P-fluorinated ylides and phosphoranes. Heteroatom Chemistry, 1998, 9, 659-664.	0.7	16

4

#	Article	IF	CITATIONS
55	Asymmetric synthesis of organophosphorus compounds. Tetrahedron: Asymmetry, 1998, 9, 1279-1332.	1.8	221
56	Chiral symmetric phosphoric acid esters as sources of optically active organophosphorus compounds. Tetrahedron: Asymmetry, 1998, 9, 1645-1649.	1.8	39
57	Methods of preparation ofC-substituted phosphorus ylides and their application in organic synthesis. Russian Chemical Reviews, 1997, 66, 225-254.	6.5	182
58	ASYMMETRIC INDUCTION IN THE REACTION OF NONSYMMETRICAL PHOSPHINIC AND PHOSPHINOUS ACID CLORIDES WITH DERIVATIVES OF D-GLUCOFURANOSE. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 115, 115-124.	1.6	18
59	C-element-substituted phosphorus ylids. Tetrahedron, 1996, 52, 1855-1929.	1.9	168
60	Simple route to chiral organophosphorus compounds. Tetrahedron: Asymmetry, 1996, 7, 967-970.	1.8	39
61	Stereoselective oxidation of N-phosphor (III) substituted amino acids. Tetrahedron Letters, 1995, 36, 3921-3924.	1.4	20
62	REACTION OF TERVALENT PHOSPHORUS COMPOUNDS WITH STERICALLY HINDERED N-CHLOROAMINES. Phosphorus, Sulfur and Silicon and the Related Elements, 1995, 102, 133-141.	1.6	9
63	<i>TERT</i> -BUTYLCHLORO- AND BROMOPHOSPHONIC ACIDS AS SOURCES OF DIOXOPHOSPHORANES. Phosphorus, Sulfur and Silicon and the Related Elements, 1995, 103, 191-197.	1.6	4
64	STEREOSELECTIVE WAY TO DERIVATIVES OF N-PHOSPHORYLATED AMINO ACIDS. Phosphorus, Sulfur and Silicon and the Related Elements, 1995, 103, 183-190.	1.6	8
65	Fluoroalkoxyphosphonium ylids. Epimerization and transformations. Tetrahedron Letters, 1994, 35, 1755-1758.	1.4	15
66	Chemistry of P-Halogenoylids. Synthesis and Properties. Phosphorus, Sulfur and Silicon and the Related Elements, 1990, 49-50, 239-242.	1.6	8
67	Halogenotropy in phosphorus-carbon diad. Tetrahedron Letters, 1989, 30, 2445-2448.	1.4	17
68	Reaction de wittig "anormale― Tetrahedron Letters, 1985, 26, 439-442.	1.4	14
69	P-Hetero-substituted Phosphorus Ylides. Russian Chemical Reviews, 1983, 52, 1096-1112.	6.5	26
70	Premier heteroallene stable comportant un atome de phosphore dicoordonne Tetrahedron Letters, 1982, 23, 4933-4936.	1.4	59
71	Tautomerie oxyde de phosphino-ylurique. Tetrahedron Letters, 1982, 23, 499-502.	1.4	10
72	Nouvelle orientation de la reaction des ylures du phosphore avec les aldehydes. Tetrahedron Letters, 1981, 22, 1231-1234.	1.4	18

#	Article	IF	CITATIONS
73	C,P-Carbon-Substituted Phosphorus Ylides. , 0, , 9-156.		1
74	Cumulene Ylides. , 0, , 157-198.		1
75	C-Heterosubstituted Phosphorus Ylides. , 0, , 199-272.		0
76	P-Heterosubstituted Phosphorus Ylides. , 0, , 272-358.		0
77	Conclusion and Final Remarks. , 0, , 539-540.		0
78	Asymmetric electrophilic reactions in phosphorus chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-3.	1.6	0
79	Synthesis of chiral phosphonobenzaldehydes and phosphonotyrosine. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-3.	1.6	1
80	Generation of tert-butyl-î»5-phosphanedione and its chemical properties. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-3.	1.6	0